## NORTHERN YORK COUNTY SCHOOL DISTRICT



Advanced Placement Biology

July 2014

#### NORTHERN YORK COUNTY SCHOOL DISTRICT ADVANCED PLACEMENT BIOLOGY

## I. Philosophy/Overview

AP Biology is designed to offer students a solid foundation in introductory college-level biology. By structuring the course around the four big ideas, enduring understandings and science practices, students will develop an appreciation for the study of life and help them identify and understand unifying principles within a diversified biological world. What we know today about biology is a result of inquiry. Science is a way of knowing. Therefore, the process of inquiry in science and developing critical thinking skills is the most important part of this course. At the end of the course, students will have an awareness of the integration of other sciences in the study of biology, understand how the species to which we belong is similar to, yet different from, other species, and be knowledgeable and responsible citizens in understanding biological issues that could potentially impact their lives.

### II. Core Concepts

Four "big ideas" provide students with enduring understandings that students should retain from their learning experiences in the course. In addition to a deep and meaningful understanding of the four big ideas, students who complete an AP Biology course will develop their skills in scientific investigation and reasoning. Students will engage in scientific inquiry and develop their skills in relation to science practices identified in the AP Biology curriculum as those that are necessary to scientific investigation. Students will be engaged in laboratory investigations for at least 25% of the time they spend in class and will complete a minimum of 8 inquiry-based investigations (two per big idea). These investigations will be supplemented with various other activities.

## A. The Big Ideas and Enduring Understandings

The course will present the four big ideas identified as unifying principles in the study of biology. Each big idea has "enduring understandings" which are the core concepts that you should retain and understand in order to develop a lasting understanding of the big ideas. In addition, each enduring understanding has supporting statements of "essential knowledge" that you must know to fully comprehend the enduring understanding. The big ideas and their supporting enduring understandings are listed below. Each unit references these enduring understandings. You will notice that enduring understandings and big ideas overlap and are covered in more than one unit – this is because the big ideas are all connected to each other and developing an understanding of one will help you understand others.

## 1. Big Idea 1: The process of evolution drives the diversity and unity of life.

Enduring Understanding 1A: Change in the genetic makeup of a population over time is evolution. Enduring Understanding 1B: Organisms are linked by lines of descent from common ancestry. Enduring Understanding 1C: Life continues to evolve within a changing environment. Enduring Understanding 1D: The origin of living systems is explained by natural processes. 2. Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis.

Enduring Understanding 2A: Growth, reproduction and maintenance of the organization of living systems require free energy and matter.

Enduring Understanding 2B: Growth, reproduction and dynamic homeostasis require that cells create and maintain internal environments that are different from their external environments.

Enduring Understanding 2C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis.

Enduring Understanding 2D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system's environment.

Enduring Understanding 2E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination.

# 3. Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes.

Enduring Understanding 3A: Heritable information provides for continuity of life.

Enduring Understanding 3B: Expression of genetic information involves cellular and molecular mechanisms.

Enduring Understanding 3C: The processing of genetic information is imperfect and is a source of genetic variation.

Enduring Understanding 3D: Cells communicate by generating, transmitting and receiving chemical signals.

Enduring Understanding 3E: Transmission of information results in changes within and between biological systems.

## 4. Big Idea 4: Biological systems interact, and these systems and their interactions possess complex properties.

Enduring Understanding 4A: Interactions within biological systems lead to complex properties.

Enduring Understanding 4B: Competition and cooperation are important aspects of biological systems.

Enduring Understanding 4C: Naturally occurring diversity among and between components within biological systems affects interactions with the environment.

## 5. The sequence of "Big Ideas" will be as follows:

## Semester One: Big Ideas 2 and 3 will be covered Semester Two: Big Ideas 1 and 4 will be covered

## **B.** Science Practices

- 1. In addition to developing your understanding of biology content, the goal of this course is also to help you develop the habits of mind that scientists use in their work. As such, the AP Biology course is also designed around seven science practices that will be developed through investigations and activities you participate in during class. Engaging in these practices will enable you to gather and analyze evidence and develop your own testable explanations for scientific problems. You will find evidence of activities that help you develop these practices in the schedule following this section. Activities and discussions that develop science practices will be followed by "SP 1, 2, 3, etc" depending on which practice is being targeted during that activity.
  - A. **Science Practice 1**: The student can use representations and models to communicate scientific phenomena and solve scientific problems.
  - B. Science Practice 2: The student can use mathematics appropriately.
  - C. **Science Practice 3**: The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course.
  - D. **Science Practice 4**: The student can plan and implement data collection strategies appropriate to a particular scientific question.
  - E. Science Practice 5: The student can perform data analysis and evaluation of evidence.
  - F. Science Practice 6: The student can work with scientific explanations and theories.
  - G. **Science Practice 7**: The student is able to connect and relate knowledge across various scales, concepts and representations in and across domains.

## **III.** Procedures for Assessment and Evaluation

Students will show evidence of mastery of the thematic essential questions using assessment tools which include, but are not limited to: Lab work, homework, class work, quizzes, chapter tests, and simulated AP-format questions. In addition to informal teacher assessments, students will be given a summative evaluation at the end of each unit following the guidelines and rubrics required by the College Board.

## Grading System:

| 93-100     | = | Α | (excellent progress)     |
|------------|---|---|--------------------------|
| 85-92      | = | В | (above average progress) |
| 77-84      | = | С | (average progress)       |
| 70-76      | = | D | (below average progress) |
| Below 70   | = | F | (failing)                |
| Unfinished | = | Ι | (some incomplete work)   |

## IV. Text

Urry, L.A., et al. *Campbell Biology in Focus, AP Edition.* Pearson, 2014.

## V. Resources:

## A. General Resources

*AP Biology Investigative Labs: An Inquiry-Based Approach*. New York: The College Board, 2012.

AP Biology Lab Manual. New York: The College Board, 2001.

## B. Additional Resources

"Darwin Lives! Modern Humans Are Still Evolving." Eben, Harrell. Time.com. Accessed December 19, 2011. http://www.time.com/time/health/article/0,8599,1931757,00.html. "Evolution: Species and Speciation." Connecting Concepts: Interactive Lessons in Biology. Accessed December 19, 2011. http://ats.doit.wisc.edu/biology/ey/sp.htm. "Instant' Evolution Seen in Darwin's Finches, Study Says." Inman, Mason. National Geographic News. Accessed November 30, 2011. http://news.nationalgeographic.com/news/2006/07/060714-evolution.html. Lamb, Trevor D. "Evolution of the Eye." Scientific American 305, no. 1 (2011): 64-69. "Lesson 6: Why Does Evolution Matter Now?" PBS. Accessed December 7, 2011. http://www.pbs.org/wgbh/evolution/educators/lessons/lesson6/index.html. "Making Cladograms: Phylogeny, Evolution, and Comparative Anatomy." ENSI (Evolution & the Nature of Science Institutes). Accessed November 30, 2011. http://www.indiana.edu/~ensiweb/lessons/mclad.html. "Peanut Variation Lab." Accessed December 13, 2011. http://www.biology.fourcroy.org/chapters/90\_ca\_std/handouts/05peanutlab.htm. "Speciation in Real Time." Understanding Evolution. Accessed December 19, 2011. http://evolution.berkeley.edu/evolibrary/news/100201 speciation. "Visualizing Life on Earth: Data Interpretation in Evolution." Understanding Evolution. Accessed December 13. 2011. http://evolution.berkeley.edu/evolibrary/article/0 0 0/ldg 01. "Welcome to Evolution 101!" Understanding Evolution. Accessed December 7, 2011. http://evolution.berkeley.edu/evolibrary/article/evo\_01. "Hardy-Weinberg Equilibrium." Stanhope, Judith. Accessed December 13, 2011. http://www.woodrow.org/teachers/bi/1994/hwintro.html.

"Amazing Cells: Cells Communicate." Genetic Science Learning Center: Learn. Genetics. Accessed November 30, 2011. http://learn.genetics.utah.edu/content/begin/cells/. "CELLS alive!" Accessed December 19, 2011. http://cellsalive.com/. "Cell Size." Massengale's Biology Junction. Accessed November 30, 2011. http://www.biologyjunction.com/cell size.htm. "Enzymes Help Us Digest Food." Hands-on Activities for Teaching Biology to High School or Middle School Students. Serendip. Accessed November 30, 2011. http://serendip.brynmawr.edu/sci\_edu/waldron/#enzymes. "LabBench Activity: Enzyme Catalysis." PHSchool — The Biology Page. Pearson. Accessed November 30, 2011. http://www.phschool.com/science/biology\_place/labbench/lab2/intro.html. "Cracking the Code of Life: See Your DNA." NovaTeachers. PBS. Accessed November 30, 2011. http://www.pbs.org/wgbh/nova/teachers/activities/2809\_genome.html. Gattaca. Directed by Andrew Niccol. 1997. Culver City, CA: Sony, 1998. DVD. Genetic Disease Information – pronto!" Human Genome Project Information. Genomics.energy.gov. Accessed November 30, 2011. http://www.ornl.gov/sci/techresources/Human Genome/medicine/assist.shtml. "Microscopic Close Up: Mammal Cell Undergoing Mitosis in Orange Environment." Google Videos. Accessed November 30, 2011. http://video.google.com/videoplay?docid=8057806780595432977#. "Mitosis & Meiosis: Doing It on the Table." ENSI (Evolution & the Nature of Science Institutes). Accessed December 19, 2011. http://www.indiana.edu/~ensiweb/lessons/gen.mm.html. "Rediscovering Biology: Unit 7: Genetics of Development: Animations and Images." Annenberg Learner. Accessed November 30, 2011. http://www.learner.org/courses/biology/units/gendev/images.html. "A Science Odyssey: You Try It: DNA Workshop." PBS. Accessed December 19, 2011. http://www.pbs.org/wgbh/aso/tryit/dna/.

Skloot, Rebecca. The Immortal Life of Henrietta Lacks. New York: Random House, 2010.

"

| Northern York County School District Curriculum |                             |  |  |  |
|-------------------------------------------------|-----------------------------|--|--|--|
| Course Name                                     | Advanced Placement Biology  |  |  |  |
| Grade Level                                     | 11-12                       |  |  |  |
| Credits                                         | 1.00 Credits (Weighted GPA) |  |  |  |

| Unit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The Nature of Science and The Chemistry of Life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 week                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |  |  |  |
| 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Organisms possess life characteristics and can be grouped into three major categories called domains: Archaea, Bacteria, and Eukarya. Biology is based on scientific principles, which provide unifying themes throughout this course.<br>AP Laboratory #1 – Artificial Selection, AP Laboratory #13 – Enzyme Acitivity / Science Practices 1-7                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |  |  |  |
| Key Understandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Essential Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concepts                                                                                                                                                                                                                                                                                                                                                                                                                      | PA Academic<br>Standards                                                                                                                                                                                                                                                                                                                                          | Terminology                                                                                                                                                                                                                                                                         |  |  |  |
| <ul> <li>Enduring understanding 1.A:<br/>Change in the genetic makeup of<br/>a population over time is<br/>evolution.</li> <li>Enduring understanding 1.B:<br/>Organisms are linked by lines of<br/>descent from common ancestry.</li> <li>Enduring understanding 1.D:<br/>The origin of living systems is<br/>explained by natural processes.</li> <li>Enduring understanding 2.A:<br/>Growth, reproduction and<br/>maintenance of the organization<br/>of living systems require free</li> </ul> | <ol> <li>What are the four big ideas?</li> <li>What are the methods involved in scientific<br/>investigation?</li> <li>How is the biosphere organized? How does<br/>one level of organization depend on<br/>another?</li> <li>What are elements that make up living<br/>organisms?</li> <li>What is the difference between organic and<br/>inorganic compounds?</li> <li>What are the major categories of organic<br/>molecules?</li> <li>What are the unique properties of water?<br/>Why are these properties vital to living<br/>organisms?</li> <li>How does the structure of the water<br/>molecule determine these properties?</li> </ol> | <ul> <li>1.A.1: Natural selection is a major mechanism of evolution.</li> <li>1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today.</li> <li>1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.</li> <li>1.D.1: There are several hypotheses about the natural</li> </ul> | <ul> <li>3.1.B.A1</li> <li>Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms.</li> <li>3.1.B.A8</li> <li>Recognize that systems within cells and multicellular organisms interact to maintain homeostasis.</li> <li>3.1.10.A1.</li> <li>Explain the characteristics of life common to all</li> </ul> | Prokaryotes<br>Photosynthesis<br>Organelles<br>Cellular specialization<br>Eukaryotes<br>Domains<br>Deoxyribonucleic Acid<br>Metabolism<br>Homeostasis<br>Natural Selection<br>Adaptations<br>Theory<br>Controlled Experiment<br>Biosphere<br>Polarity<br>Hydrophobic<br>Hydrophilic |  |  |  |
| energy and matter.<br>Enduring understanding 3.A:<br>Heritable information provides for                                                                                                                                                                                                                                                                                                                                                                                                            | <ul><li>9. How is energy transferred in metabolic reactions?</li><li>10. What is the relationship between an enzyme and its substrate?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | origin of life on Earth, each with supporting scientific evidence.                                                                                                                                                                                                                                                                                                                                                            | organisms.<br><b>3.1.12.A1.</b><br>Relate changes in the                                                                                                                                                                                                                                                                                                          | Surface tension<br>pH scale                                                                                                                                                                                                                                                         |  |  |  |

| Unit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Principles of Cellular Life: A tour of the Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 weeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 2.1<br>Key Understandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The Cell Theory states that the cell is the fundamental unit of biological structure and function. In Prokaryotic cells there are no Internal compartments. In eukaryotes, internal membranes partition the cell into specialized regions that allow cell processes to operate with optimal efficiency. Each compartment or membrane-bound organelle enables localization of chemical reactions. Extracellular structures allow cells to communicate with the external environment.         AP Laboratory # 4 - Diffusion and Osmosis / Science Practices 1 -7       PA Academic Standards       Terminology |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| incy chacistandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TTT Accurcinic Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Тегниноюду                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| <ul> <li>Enduring understanding 2.A:<br/>Growth, reproduction and<br/>maintenance of the organization<br/>of living systems require free<br/>energy and matter.</li> <li>Enduring understanding 2.B:<br/>Growth, reproduction and<br/>dynamic homeostasis require that<br/>cells create and maintain internal<br/>environments that are different<br/>from their external environments.</li> <li>Enduring understanding 3.A:<br/>Heritable information provides for<br/>continuity of life.</li> <li>Enduring understanding 3.D:<br/>Cells communicate by generating,<br/>transmitting and receiving<br/>chemical signals.</li> <li>Enduring understanding 4.A:<br/>Interactions within biological<br/>systems lead to complex<br/>properties.</li> <li>Enduring understanding 4.B:<br/>Competition and cooperation<br/>are important aspects of biological<br/>systems.</li> </ul> | <ol> <li>How is the cell the basic unit of life?</li> <li>What are the basic features of Prokaryotic cells?</li> <li>What the basic features of Eukaryotic cells?</li> <li>How do materials enter and leave the cell?</li> <li>What are the relationships between structure and function of cell organelles?</li> <li>How is the cell the basic unit of life?</li> <li>What role does the cellmembrane play in cellular homeostasis?</li> <li>What are the relationships between structure and function of cell organelles?</li> <li>How are the characteristics of life manifested by the cell?</li> </ol>  | <ul> <li>2.A.1: All living systems require constant input of free energy.</li> <li>2.A.2: Organisms capture and store free energy for use in biological processes.</li> <li>2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization.</li> <li>2.B.1: Cell membranes are selectively permeable due to their structure.</li> <li>2.B.2: Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes.</li> <li>2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions.</li> <li>3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.</li> </ul> | <ul> <li>3.1.B.A1<br/>Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms.</li> <li>3.1.B.A5<br/>Relate the structure of cell organelles to their function (energy capture and release, transport, waste removal, protein synthesis, movement.</li> <li>Explain how the cell membrane functions as a regulatory structure and protective barrier for the cell.</li> <li>3.1.B.A8<br/>Recognize that systems within cells and multi-cellular organisms interact to maintain homeostasis.</li> </ul> | Fluid Mosaic<br>Selective<br>Permeability<br>Diffusion<br>Osmosis<br>Active Transport<br>Sodium-Potassium<br>Pump<br>Endocytosis<br>Exocytosis<br>Ion channels<br>Protein kinases<br>G Protein-linked<br>receptors<br>Plasma membrane<br>Cytosol<br>Mitochondria<br>Extracellular matrix<br>Gap junctions<br>Organelles<br>Protocell<br>Extracellular<br>structures<br>Tight junctions<br>Cellulose<br>Dynamic<br>instability<br>Endomembrane<br>system<br>Vacuole<br>Nucleoid |  |  |

| <b>Enduring understanding 4.C</b> :<br>Naturally occurring diversity<br>among and between components<br>within biological systems affects | <b>3.D.2</b> : Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| interactions with the environment                                                                                                         | <b>4.A.2</b> : The structure and function of subcellular components, and their interactions, provide essential cellular processes.  |  |
|                                                                                                                                           | <b>4.B.2</b> : Cooperative interactions within organisms promote efficiency in the use of energy and matter.                        |  |
|                                                                                                                                           | <b>4.C.1</b> : Variation in molecular units provides cells with a wider range of functions.                                         |  |

| Unit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cells and Energy - Introduction to Metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 Weeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Energy is the capacity to do work. The flow of energy among atoms and molecules obeys the Laws of Thermodynamics. All chemical reactions fall into 2 categories which are known as exergonic and endergonic reactions. Energy released by chemical reactions within a cell is captured and transported by ATP and electron carriers. Cellular reactions are linked in sequences called metabolic pathways.<br>AP Laboratory # 5 – Photosynthesis, AP Laboratory #6 – Cellular Respiration / Science Practices 1 – 7.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Key Understandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Essential Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PA Academic<br>Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Terminology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <ul> <li>Enduring understanding 1.B:<br/>Organisms are linked by lines of<br/>descent from common ancestry.</li> <li>Enduring understanding 2.A:<br/>Growth, reproduction and<br/>maintenance of the organization<br/>of living systems require free<br/>energy and matter</li> <li>Enduring understanding 4.A:<br/>Interactions within biological<br/>systems lead to complex<br/>properties.</li> <li>Enduring understanding 4.B:<br/>Competition and cooperation are<br/>important aspects of biological<br/>systems.</li> <li>Enduring understanding 4.C:<br/>Naturally occurring diversity<br/>among and between components<br/>within biological systems affects<br/>interactions with the environment.</li> </ul> | <ol> <li>What is the difference between an aerobic<br/>and anaerobic?</li> <li>What are the major stages of aerobic<br/>respiration and where inside cells do they<br/>take place?</li> <li>What is energy?</li> <li>How does energy flow in chemical<br/>reactions?</li> <li>How is free energy used in biological<br/>systems to facilitate growth, reproduction<br/>and homeostasis?</li> <li>How is energy stored in biological systems?</li> <li>How is cellular energy carried between<br/>coupled reactions?</li> <li>How do cells control their metabolic<br/>reactions?</li> </ol> | <ol> <li>1.B.1: Organisms share many<br/>conserved core processes and<br/>features that evolved and are<br/>widely distributed among<br/>organisms today.</li> <li>2.A.1: All living systems require<br/>constant input of free energy.</li> <li>2.A.2: Organisms capture and<br/>store free energy for use in<br/>biological processes.</li> <li>2.A.3: Organisms must exchange<br/>matter with the environment to<br/>grow, reproduce and maintain<br/>organization.</li> <li>4.A.1: The subcomponents of<br/>biological molecules and their<br/>sequence determine the<br/>properties of that molecule.</li> <li>4.A.2: The structure and<br/>function of subcellular<br/>components, and their<br/>interactions, provide essential<br/>cellular processes.</li> <li>4.A.4: Organisms exhibit<br/>complex properties due to<br/>interactions between their<br/>constituent parts.</li> </ol> | <ul> <li>3.1.12.A1.<br/>Relate changes in the<br/>environment to various<br/>organisms' ability to<br/>compensate using<br/>homeostatic mechanisms.</li> <li>3.1.C.A1.<br/>Explain the chemistry of<br/>metabolism</li> <li>3.1.B.A2.<br/>Identify the initial<br/>reactants, final products,<br/>and general purposes of<br/>photosynthesis and<br/>cellular respiration.</li> <li>Explain the important role<br/>of ATP in cell<br/>metabolism. Describe the<br/>relationship between<br/>photosynthesis and<br/>cellular respiration in<br/>photosynthetic organisms.</li> <li>Explain why many<br/>biological<br/>macromolecules such as<br/>ATP and lipids contain<br/>high energy bonds.</li> </ul> | Energy<br>Kinetic Energy<br>Potential Energy<br>1 <sup>st</sup> Law of<br>Thermodynamics<br>2 <sup>nd</sup> Law of<br>Thermodynamics<br>Entropy<br>Chemiosmosis<br>ATP<br>ADP<br>Cellular Respiration<br>Glycolysis<br>Coenzyme A<br>Fermentation<br>Catabolism<br>Anabolism<br>Photosynthesis<br>Photobiology<br>Calvin cycle<br>NADPH<br>Photosytem I<br>Photosytem I<br>Citric acid cycle<br>Electron transport<br>ATP Synthetase<br>Energy coupling<br>Activation energy<br>Catalyst<br>Substrate |  |  |

|  | <ul> <li>4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy.</li> <li>4.B.1: Interactions between molecules affect their structure and function.</li> <li>4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter.</li> </ul> | Explain the importance of<br>enzymes as catalysts in<br>cell reactions. |  |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
|  | <b>Essential knowledge 4.C.1</b> :<br>Variation in molecular units<br>provides cells with a wider range<br>of functions.                                                                                                                                                                                                               |                                                                         |  |

| Unit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cell Communication and The Cell Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 weeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cell division is necessary for the reproduction, growth and repair of organisms. Asexual reproduction produces organisms which are identical to the parent. In sexual reproduction, two haploid gametes unite to form a diploid zygote. Cell division occurs in phases known as IPMAT and is regulated by cyclins and CDK's. Meiosis is composed of two cycles producing haploid gametes. All cells have a preprogrammed death which is a necessary process in living things. AP Laboratory # 7 – Cell Division: Mitosis and Meiosis / Science Practices 1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Key Understandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Essential Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PA Academic<br>Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Terminology                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| <ul> <li>Enduring understanding 1.A:<br/>Change in the genetic makeup of<br/>a population over time is<br/>evolution.</li> <li>Enduring understanding 2.A:<br/>Growth, reproduction and<br/>maintenance of the organization<br/>of living systems require free<br/>energy and matter.</li> <li>Enduring understanding 2.C:<br/>Organisms use feedback<br/>mechanisms to regulate growth<br/>and reproduction, and to maintain<br/>dynamic homeostasis</li> <li>Enduring understanding 3.D:<br/>Cells communicate by generating,<br/>transmitting and receiving<br/>chemical signals</li> <li>Enduring understanding 2.E:<br/>Many biological processes<br/>involved in growth, reproduction<br/>and dynamic homeostasis include</li> </ul> | <ol> <li>How do meiosis and sexual reproduction<br/>produce genetic variability?</li> <li>What are the events of cytokinesis?</li> <li>What are the stages of the cell cycle?</li> <li>How is DNA in eukaryotic cells organized<br/>into chromosomes?</li> <li>What are the functions of Cellular<br/>Reproduction?</li> <li>What are the stages of the cell cycle?</li> <li>How is the cell cycle regulated in a normal<br/>cell? How is this regulation disrupted in<br/>cancerous cells?</li> <li>What are the major events in cell division<br/>and what are the differences in division<br/>between plant and animal cells?</li> <li>What are the differences between the<br/>processes of mitosis and meiosis?</li> <li>How is meiosis a source of genetic<br/>variation? Why is genetic variation<br/>important for evolution?</li> <li>What are similarities and differences<br/>between prokaryotic cell reproduction, viral<br/>replication, reproduction in flowering plants<br/>and animal reproduction? What is the</li> </ol> | <ul> <li>1.A.3: Evolutionary change is also driven by random processes.</li> <li>2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization.</li> <li>2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms.</li> <li>2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes.</li> <li>2.C.2: Organisms respond to changes in their external environments.</li> <li>2.E.2: Timing and coordination</li> </ul> | <ul> <li><b>3.1.B.A3.</b><br/>Explain how all<br/>organisms begin their life<br/>cycles as a single cell and<br/>that in multicellular<br/>organisms, successive<br/>generations of embryonic<br/>cells form by cell division</li> <li><b>3.1.10.A4.</b><br/>Describe the cell cycle<br/>and the process and<br/>significance of mitosis.</li> <li><b>3.1.B.A4.</b><br/>Summarize the stages of<br/>the cell cycle.</li> <li>Examine how interactions<br/>among the different<br/>molecules in the cell<br/>cause the distinct stages<br/>of the cell cycle which<br/>can also be influenced by<br/>other signaling molecules.</li> </ul> | Allele<br>Interphase<br>Prophase<br>Metaphase<br>Ananphase<br>Telophase<br>Asexual Reproduction<br>Sexual Reproduction<br>Binary Fission<br>Cell Cycle<br>Cell division<br>Cell plate<br>Centriole<br>Centriole<br>Centriole<br>Centromere<br>Chiasmata<br>Chromosome<br>Crossing over<br>Cytokinesis<br>Haploid<br>Diploid<br>Duplicated<br>chromosomes<br>Gamete<br>Karyotype<br>Meiosis I and II<br>Mitosis |  |  |
| temporal regulation and coordination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul><li>relationship of each of these to genetic variation?</li><li>13. What are some modern biotechnological ?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of physiological events are<br>regulated by multiple<br>mechanisms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Explain the role of mitosis<br>in the formation of new<br>cells and its importance in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Recombination<br>Cloned cells<br>Somatic                                                                                                                                                                                                                                                                                                                                                                       |  |  |

| Enduring understanding 3.A:        | 14. practices in relation to reproduction? | <b>2.E.3</b> : Timing and coordination                           | maintaining chromosome       | Germ                    |
|------------------------------------|--------------------------------------------|------------------------------------------------------------------|------------------------------|-------------------------|
| Heritable information provides for | 15. What are stem cells and how is         | of behavior are regulated by                                     | number during asexual        | Spindle                 |
| continuity of life.                | development/differentiation regulated?     | various mechanisms and are                                       | reproduction.                | Cell cycle check points |
| ·                                  |                                            | important in natural selection.                                  | 1                            | Polyploidy              |
| Enduring understanding 3.C:        |                                            | 1                                                                | Compare and contrast a       | Nondisjunction          |
| The processing of genetic          |                                            | <b>3.A.3</b> : The chromosomal basis                             | virus and a cell. Relate the | Translocation           |
| information is imperfect and is a  |                                            | of inheritance provides an                                       | stages of viral cycles to    |                         |
| source of genetic variation.       |                                            | understanding of the pattern of                                  | the cell cycle               |                         |
| _                                  |                                            | passage (transmission) of genes                                  |                              |                         |
| Enduring understanding 4.A:        |                                            | from parent to offspring.                                        | <b>3.1.12.A4</b> .           |                         |
| Interactions within biological     |                                            |                                                                  | Explain how the cell cycle   |                         |
| systems lead to complex            |                                            | <b>3.A.4</b> : The inheritance pattern of                        | is regulated                 |                         |
| properties.                        |                                            | many traits cannot be explained                                  |                              |                         |
|                                    |                                            | by simple Mendelian genetics.                                    |                              |                         |
| Enduring understanding 4.C:        |                                            |                                                                  |                              |                         |
| Naturally occurring diversity      |                                            | <b>3.C.2</b> : Biological systems have                           |                              |                         |
| among and between components       |                                            | multiple processes that increase                                 |                              |                         |
| within biological systems affects  |                                            | genetic variation.                                               |                              |                         |
| interactions with the environment. |                                            |                                                                  |                              |                         |
|                                    |                                            | <b>3.D.1</b> : Cell communication                                |                              |                         |
|                                    |                                            | processes share common                                           |                              |                         |
|                                    |                                            | features that reflect a shared                                   |                              |                         |
|                                    |                                            | evolutionary history.                                            |                              |                         |
|                                    |                                            | <b>3.D.2</b> : Cells communicate with                            |                              |                         |
|                                    |                                            | each other through direct contact                                |                              |                         |
|                                    |                                            | with other cells or from a                                       |                              |                         |
|                                    |                                            | distance via chemical signaling.                                 |                              |                         |
|                                    |                                            | distance via chemical signamig.                                  |                              |                         |
|                                    |                                            | <b>3.D.3</b> : Signal transduction                               |                              |                         |
|                                    |                                            | pathways link signal reception                                   |                              |                         |
|                                    |                                            | with cellular response.                                          |                              |                         |
|                                    |                                            | <b>3.D.4</b> : Changes in signal                                 |                              |                         |
|                                    |                                            | <b>5.D.4</b> : Changes in signal transduction pathways can alter |                              |                         |
|                                    |                                            | cellular response.                                               |                              |                         |
|                                    |                                            | centular response.                                               |                              |                         |
|                                    |                                            | <b>4.A.2</b> : The structure and                                 |                              |                         |
|                                    |                                            | function of subcellular                                          |                              |                         |
|                                    |                                            | components, and their                                            |                              |                         |
|                                    |                                            | interactions, provide essential                                  |                              |                         |
|                                    |                                            | cellular processes.                                              |                              |                         |
|                                    |                                            |                                                                  |                              |                         |
|                                    |                                            | <b>4.A.4</b> : Organisms exhibit                                 |                              |                         |
|                                    |                                            | complex properties due to                                        |                              |                         |

|  | interactions between their constituent parts.                                      |  |
|--|------------------------------------------------------------------------------------|--|
|  | <b>4.C.3</b> : The level of variation in a population affects population dynamics. |  |

| Unit 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DNA – The molecular basis of Inheritance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 Weeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Genes are particulate and are inherited according to Mendel's Laws. DNA structure reflects its role as the genetic material.<br>Genetics show that genes code for protein by utilizing the processes of transcription and translation. Prokaryotic and<br>Eukaryotic genes are regulated gene expression. Genome sequencing has provided insight into how genes are expressed.<br>DNA can genetically transform cells and organisms. Changes in gene expression underline cell differentiation in<br>development.<br>AP Laboratory # 8 – Biotechnology: Bacterial Transformation / Science Practices 1-7                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Key Understandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Essential Questions</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA Academic Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Terminology                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| <ul> <li>Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.</li> <li>Enduring understanding 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination.</li> <li>Enduring understanding 3.A: Heritable information provides for continuity of life.</li> <li>Enduring understanding 3.B: Expression of genetic information involves cellular and molecular mechanisms.</li> <li>Enduring understanding 3.C: The processing of genetic information is imperfect and is a source of genetic variation.</li> <li>Enduring understanding 4.A: Interactions within biological systems lead to complex properties.</li> </ul> | <ol> <li>How does DNA replication<br/>ensure genetic constancy?</li> <li>How are genes and proteins<br/>related?</li> <li>What is biotechnology?</li> <li>How does DNA<br/>recombination occur?</li> <li>What are genes composed<br/>of?</li> <li>How are genes and proteins<br/>related?</li> <li>How are genes related?</li> <li>How is the sequence of a<br/>messenger RNA molecule<br/>translated into a protein?</li> <li>What are the major events<br/>that lead to our current<br/>understanding of DNA as<br/>the genetic material of living<br/>organisms?</li> <li>What is the basic structure<br/>of the DNA molecule and<br/>how does this structure<br/>make replication possible?</li> <li>What are the major steps in<br/>DNA replication?</li> <li>What are the similarities and<br/>difference between DNA</li> </ol> | <ul> <li>1.A.2: Natural selection acts on phenotypic variations in populations.</li> <li>2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms.</li> <li>3.A.1: DNA, and in some cases RNA, is the primary source of heritable information.</li> <li>3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization.</li> <li>3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring.</li> </ul> | <ul> <li><b>3.1.10.B3.</b><br/>Describe the basic structure of<br/>DNA and its function in genetic<br/>inheritance.</li> <li>Describe the role of DNA in<br/>protein synthesis as it relates to<br/>gene expression.</li> <li><b>3.1.B.B3.</b><br/>Describe the basic structure of<br/>DNA, including the role of<br/>hydrogen bonding.</li> <li>Explain how the process of DNA<br/>replication results in the<br/>transmission and conservation of<br/>the genetic code.</li> <li>Describe how transcription and<br/>translation result in gene<br/>expression.</li> <li>Differentiate among the end<br/>products of replication,<br/>transcription, and translation.</li> </ul> | F1 generation<br>F2 generation<br>Punnett square<br>Law of segregation<br>Test cross<br>Dihybrid cross<br>Pedigrees<br>Mutations<br>Epistasis<br>Phenotype<br>Genotype<br>Plasmids<br>Transformation<br>Base pairs<br>Double helix<br>Replication forks<br>Okazaki fragments<br>Leading strand<br>Lagging strand<br>Telomere<br>Mutagens<br>One gene-one<br>polypeptide<br>Introns<br>Exons<br>Elongation<br>Termination |  |  |  |
| <b>Enduring understanding 4.C</b> :<br>Naturally occurring diversity among<br>and between components within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | differences between DNA and RNA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>3.A.4</b> : The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>3.1.C.B3.</b> Describe the structure of the DNA and RNA molecules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5'<br>3'<br>Codons<br>Transcription                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |

| genotype in an organism. |
|--------------------------|
|--------------------------|

| Unit 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Genomes and Evolutionary Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 weeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Evolution may be measured by changes in Allele Frequencies. Mutation, Selection, Gene Flow, Genetic Drift and Nonrandom mating may lead to Evolutionary changes over time. Selection can be Stabilizing, Directional or Disruptive. Genomes may reveal both Neutral and the Selective Processes of Evolution. Life may be viewed through its evolutionary history and by using phylogeny may become comparative and predictive. Speciation is the process which produces the splits among lineages in the tree of life. According to science, events in the earth's history can be dated and read through the fossil record.</li> <li>AP Laboratory # 2 – Mathematical Modeling: Hardy-Weinberg, AP Laboratory #3 – Comparing DNA sequences to understand evolutionary relationship with BLAST / Science Practices 1-7</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Key Understandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Essential Questions</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PA Academic Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Terminology                                                                                                                                                                                                                                                                                                                                                                                       |  |
| <ul> <li>Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.</li> <li>Enduring understanding 1.B: Organisms are linked by lines of descent from common ancestry.</li> <li>Enduring understanding 1.C: Life continues to evolve within a changing environment.</li> <li>Enduring understanding 2.D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system's environment.</li> <li>Enduring understanding 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal</li> </ul> | <ol> <li>What is the history of<br/>evolutionary thought?</li> <li>How do we distinguish<br/>between Lamarck's idea of<br/>evolution and Darwin's?</li> <li>What evidence did Darwin<br/>use to develop the theory of<br/>natural selection? What is all<br/>current evidence of<br/>evolutionary change?</li> <li>What is the difference<br/>between microevolution and<br/>macroevolution?</li> <li>How do interactions<br/>between populations and<br/>their environments drive<br/>natural selection?</li> <li>What is the relationship<br/>between alleles, allele<br/>frequency and gene pools of<br/>populations?</li> </ol>                                                                                                                                                                                                        | <ul> <li>1.A.1: Natural selection is a major mechanism of evolution.</li> <li>1.A.2: Natural selection acts on phenotypic variations in populations.</li> <li>1.A.3: Evolutionary change is also driven by random processes.</li> <li>1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics.</li> <li>1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.</li> </ul> | <ul> <li><b>3.1.10.C1.</b><br/>Explain the mechanisms of biological evolution</li> <li><b>3.1.B.C1.</b><br/>Describe species as reproductively distinct groups of organisms.</li> <li>Analyze the role that geographic isolation can play in speciation.</li> <li>Explain how evolution through natural selection can result in changes in biodiversity through the increase or decrease of genetic diversity within a population.</li> <li>Describe how the degree of kinship between species can be inferred from the similarity in their DNA sequences</li> </ul> | Evolution<br>Evolutionary theory<br>Natural selection<br>Adaptation<br>Gene flow<br>Genetic drift<br>Population bottlenecks<br>Nonrandom mating<br>Sexual selection<br>Phylogeny<br>Homologies<br>Synapomorphy<br>Convergent evolution<br>Maximum likelihood<br>Molecular clock<br>Polyphyletic<br>Speciation<br>Biological species<br>concept<br>Allopatric speciation<br>Post-zygotic isolating |  |
| regulation and coordination.<br>Enduring understanding 3.A:<br>Heritable information provides for<br>continuity of life.<br>Enduring understanding 3.C: The                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ol> <li>What is Hardy-Weinberg<br/>equilibrium and how can we<br/>use the Hardy-Weinberg<br/>Equation to calculate allele<br/>frequencies?</li> <li>How do we define<br/>"species?"</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>1.C.1: Speciation and extinction<br/>have occurred throughout the<br/>Earth's history.</li> <li>1.C.2: Speciation may occur when<br/>two populations become<br/>reproductively isolated from each</li> </ul>                                                                                                                                                                                                                                                                               | <ul> <li>3.1.12.C1.</li> <li>Analyze how natural selection leads to speciation.</li> <li>3.1.10.C2.</li> <li>Explain the role of mutations and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            | mechanisms<br>Radiometric dating<br>Half-lives<br>Sedimentary rocks<br>Biotas<br>Flora<br>Mass extinction                                                                                                                                                                                                                                                                                         |  |
| processing of genetic information is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9. What are the different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gene recombination in changing a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |  |

| imports and is a source of genetic<br>variation.modes of speciation?I.G.3. Populations of organisms<br>organisms<br>of genetic to evolve<br>organismspopulation of organisms<br>organisms<br>organisms<br>organisms<br>of source<br>organisms<br>of source<br>organisms<br>of source<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>organisms<br>or                                                                                                                                                          |                             |                                       |                                            |                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|--------------------------------------------|------------------------------------|--|
| Enduring understanding 4.8:<br>Competition and cooperation are<br>important aspects of biological systemsInterpret data from fossil records,<br>anatown and bysiology, and<br>policioses, regarding the<br>or origin of life?5.1.06.30.<br>Interpret data from fossil records,<br>anatown and bysiology, and<br>of evolutionFohring understanding 4.0:<br>biological systems12. What are the current<br>in the two lotion of life?5.0.1.2.1.4.1 biological systems for<br>cursystems are affected by<br>or evolution3.1.10.2.3.<br>matter and free energy.Nobolgical systems12. What is the hasic timeline<br>the two lotion of life?13.1.2.0.3.<br>cursystems are affected by<br>or evolution14. How is the colosymbiotic<br>theory and what is the<br>evidence that support<br>explanation of the evolution of<br>is bystematic biological systems in<br>explanation of the evolution in<br>terms of evolution in<br>terms of evolution in<br>terms of evolution, structures,<br>processes, organization, row<br>is biological systems in<br>explanation of the evolution in<br>terms of evolution, structures,<br>processes, organization, row<br>is biological systems in<br>explanation of the evolution in<br>terms of evolution, structures,<br>processes, organization, row<br>in biological systems in<br>explanation of the evolution in<br>terms of evolution, structures,<br>processes, organization, row<br>in biological events are regulated by<br>avaries mechanisms,<br>reconstanter energise3.1.10.2.3.<br>Interviet data from fossil records,<br>analyze the evidence to support<br>arrous therrises of evolution<br>(gradualism), punctuated<br>equilibre.14. How is life organization<br>row of systems from<br>processes, organization, row<br>in biosphere and life evolution<br>is biosphere and life evolution2.1.2.1.Timing and coordination<br>organism, and these versi                                                                                                                                                                                                   |                             |                                       |                                            | population of organisms            |  |
| Enduring understanding 4.8:<br>Competition and ecooperation as<br>velocitionary history?2.0.1: All biological systems<br>orpulations, communities and<br>populations, communities and<br>reactions invoides relevant to the theory<br>ore evolution<br>systems<br>thoilogical systems mitters<br>toological systems mitters<br>toological systems mitters<br>toological systems<br>biological systems affects interactions<br>with the environment.Interpret duation form fossil records,<br>andows and physiology, and<br>systematic biological systems mitters<br>toological systems<br>toological systems<br><td>variation.</td> <td></td> <td>continue to evolve.</td> <td>3 1 10 C3</td> <td></td> | variation.                  |                                       | continue to evolve.                        | 3 1 10 C3                          |  |
| Competition and cooperation are<br>important spects of biological systemsevolutionary history?<br>1. What are the current<br>byotheses regarding the<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Enduring understanding 4.B: |                                       | <b>2.D.1</b> : All biological systems from |                                    |  |
| important aspects of biological systems.11. What are the current<br>hypotheses regarding the<br>origin of life?populations, communities and free dately<br>complex biolic and abiotic<br>matter and free cenergy.DNA studies relevant to the theory<br>or evolutionRundily occurring diversity among<br>and between components within<br>biological systems affects interactions<br>with the environment.1.1. What is the basic timeline<br>increations involving exchange of<br>matter and free energy.DNA studies relevant to the theory<br>or evolution13. What is the basic timeline<br>ior of eukaryotic cells?1.2. Homeostatic mechanisms<br>reflect bot common ancestry and<br>of eukaryotic cells?2.D.2. Homeostatic mechanisms<br>reflect bot common ancestry and<br>difference<br>between the kingdoms in<br>of systematic biology?DNA studies relevant to the theory<br>origins (runding exchange of<br>matter and free energy.NA adayce the evidence to support<br>various theories of evolution<br>(gauduism, purcutated<br>equilibrium). Evaluate survival of<br>the firsts in terrants<br>periodic software<br>periodic software<br>periodic software<br>periodic software<br>terrant development of an<br>organism, and these events are regulated<br>by matipe mechanisms.DNA studies relevant to the theory<br>origo adaption in<br>tifter to mino ancestry in<br>difference<br>terrant development of an<br>organism, and these events are regulated<br>by matipe mechanisms and are<br>singer and infer cycles?NA adaption in<br>terrant in the cycles of a<br>regulation of physiological events are regulated<br>by matipe mechanisms and are<br>comparison of the pattern of<br>massage (transmission) of genes<br>from parent to offspring.NA adaption in<br>terrantion development of<br>assage (transmission) of genes<br>from parent to offspring.NA adaption in<br>terran                                                                                                                                                                                                 |                             | 2                                     |                                            | · ·                                |  |
| Enduring understanding 4.C:<br>Naturally occurring diversity among<br>and between components within<br>biological systems affects interactions<br>with the environment.origin of life?<br>12. What is the evolution of life?<br>13. What is the evolution of life?<br>13. What is the endosymbiotic<br>theory and what is the<br>evidence that supports this<br>caphanation of the evolution<br>of eularyotic cells?complex biotic and abloit of<br>interactions molecularyotic<br>2.D.2: Homeostatic mechanisms<br>reflect both common ancessray and<br>divergence due to adaptation in<br>divergence due to adaptation in<br>organism, and these events are<br>regulated by a variety of<br>mechanisms.1.1.2.C.3.<br>Analyze the evidence to support<br>various theories of evolution<br>(gradualism, punctuated<br>equilibrium). Evaluate survival of<br>the future inters of spociation of<br>aparities.14. How is if for granized in<br>systematic biology?14. How is if for granized in<br>systematic biology?2.D.2: Homeostatic mechanisms<br>related by a variety of<br>mechanisms.2.E.1: Timing and coordination of<br>aparities.3.H.2.C.3.2. E.2. Timing and coordination of<br>physiological events are regulated<br>by nutliple mechanisms.2.E.1: Timing and coordination of<br>aparities.3.A.3: The chromosomal basis of<br>inheritance provides an<br>are regulated by<br>various mechanisms.3.A.3: The chromosomal basis of<br>inheritance provides an<br>aparet to offspring.3. A.4: The inheritance paperter of<br>many traits cannot be explained by<br>simple Mendeling enserts.3.A.4: The inheritance paysetter of<br>many traits cannot be explained by<br>simple Mendeling systems have<br>multiple meckanisms have3.C.2: Biological systems have<br>metation of<br>simple divergence base systems have<br>simple divergence base systems have                                                                                                                                                                                                                                  |                             |                                       |                                            |                                    |  |
| Naturally occurring diversity among<br>and between components with<br>biological systems affects interactions12. What is the basic timeline<br>for the evolution of life"<br>13. What is the endosymbiotic<br>theory and what is the<br>evidence that support this<br>capitanation of the evolution<br>of eukaryotic cells?interactions involving exchange of<br>and reter and free energy.<br>2.D.2: Homeostatic mechanisms<br>reflect both common ancestry and<br>different environments.3.12.(23.<br>Analyze the evidence to support<br>various theories of evolution<br>(gradualism, punctuated<br>equilibrium, Evaluate survival of<br>the fittest in terms of species that<br>have remained unchanged over<br>long periods of time.2.1.2: Homeostatic mechanisms<br>reglet both common ancestry and<br>function of structures,<br>processes, organization, rule<br>in biosphere and life cycles?2.1.2: Homeostatic mechanisms<br>regulated by a variety of<br>mechanisms.3.1.2.(3).<br>Analyze the evidence to support<br>various theories of evolution<br>(gradualism, punctuated<br>equilibrium). Evaluate survival of<br>the fittest in terms of species shat<br>indevelopment of an<br>regulated by a variety of<br>mechanisms.3.1.2.(3).<br>Analyze the evidence to support<br>various mechanisms.2.2: Timing and coordination of<br>physiological events are nergulated by<br>various mechanisms and are<br>important in natural selection of<br>phenating of the pattern of<br>passage (transmission) of genes<br>simple Mendelian genetics.3.A.3. The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>simple Mendelian genetics.3.C.2: Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                             |                             |                                       |                                            | of evolution                       |  |
| and between components within<br>biological systems affects interactions<br>with the environment.for the evolution of life?<br>13. What is the endosymbiotic<br>theory and what is the<br>evidence that supports this<br>explanation of the evolution<br>of eukaryotic cells?natter and free energy.Analyze the evidence to support<br>various theories of evolution<br>(gradualitism, punctuated<br>equilibrium). Evaluate survival of<br>the fifteent environments.14. How is life organized in<br>systematic biology?2.D.2: Homeostatic mechanisms<br>reflect both common ancestry and<br>divergence due to adaptation in<br>specific events are necessary for<br>the normal development of an<br>organism, and these events are<br>regulated by a variety of<br>mechanisms.2.E.2: Timing and coordination<br>of behavior are regulated by<br>various mechanisms.2.E.2: Timing and coordination<br>of behavior are regulated by<br>various mechanisms and are<br>important in natural selection.3.A.3: The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of<br>simple Mendelian genetics.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.3.A.2: Biological systems have<br>multiple mechanisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                       |                                            |                                    |  |
| biological systems affects interactions<br>with the environment.13. What is the endosymbiotic<br>theory and what is the<br>evidence that supports this<br>caphanation of the evolution<br>of culkaryotic cells?2.D.2: Homeostatic mechanisms<br>caphanation on accestry and<br>difference the toom on ancestry and<br>difference in environments.various theories of evolution<br>(gridualism, punctuated<br>equilibrium). Evaluate survival of<br>the fittest in terms of species that<br>have remained unchanged over<br>log periods of time.13. What is the difference<br>between the kingdoms in<br>terms of evolution of structure<br>and function of structures<br>in biosphere and life cycles?2.D.2: Homeostatic mechanismo<br>and adaptation in<br>difference events are<br>regulated by a variety of<br>mechanisms.2.E.1: Timing and coordination<br>of specific sevents are necessary for<br>mechanisms.1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                       |                                            |                                    |  |
| with the environment.theory and what is the<br>evidence that supports this<br>explanation of the evolution<br>of ecularyotic cells?2.D2: Homeostation<br>reflect both common ancestry and<br>divergence due to adaptation in<br>systematic biology?(gradualism, punctuated<br>epiditrium). Evaluates survival of<br>the fittest in terms of species that<br>have remained unchanged over<br>log periods of time.14. How is life corganized in<br>systematic biology?2.E1: Timing and coordination of<br>species events are necessary in<br>events are necessary in<br>and these events are necessary in<br>regulated by a variety of<br>mechanisms.epidotes of time.2.E1: Timing and coordination of<br>species events are necessary in<br>and function of structures,<br>processes, organization, role<br>in biosphere and life cycleE.E2: Timing and coordination of<br>of physiological events are regulated<br>by variety mechanisms.2.E2: Timing and coordination<br>of obchavior are regulated by<br>variety multiple mechanisms and are<br>important in natural selection.E.E2: Timing and coordination<br>of obchavior are regulated by<br>variety mechanisms and are<br>important in natural selection.3.A3: The chromosame basis of<br>inheritance partern of<br>many traits cannot be explained by<br>sange (transmission) of genes<br>From parent to offspring.S.A4: The inheritance pattern of<br>many traits cannot be explained by<br>sange inprecesses that increase3.A4: The inheritance pattern of<br>many traits cannot be explained by<br>multipe increasesS.A4: The inheritance pattern of<br>many traits cannot be explained by<br>multipe increases                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                       | matter and mee energy.                     | • • • • • • • •                    |  |
| evidence that supports this<br>explanation of the evolution<br>of eukaryotic cells?reflect both common ancestry and<br>idiferent environments.equilibrium). Evaluate survival of<br>the fittest in terms of species that<br>have remained unchanged over<br>long periods of time.14. How is life organized in<br>systematic biology?2.E.I: Timing and coordination of<br>specific events are necessary for<br>to moral development of<br>arguism. and these events are<br>regulated by a variety of<br>myslogical events are regulated<br>by multiple mechanisms.environments.15. What is the difference<br>between the kingdoms in<br>terms of evolution, structure<br>and function of structures,<br>in biosphere and life cycles?2.E.2: Timing and coordination of<br>physiological events are regulated<br>by multiple mechanisms.environments.2.E.2: Timing and coordination of<br>physiological events are regulated<br>by multiple mechanisms.explanation of<br>physiological events are regulated<br>by multiple mechanisms.explanation of<br>physiological events are regulated<br>by multiple mechanisms.3.A.3: The chromosomal basis of<br>impertant in atural selection.explanation of<br>spasae (transmission) of genes<br>proses that increaseexplanation of<br>physiological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                       | <b>2.D.2</b> : Homeostatic mechanisms      |                                    |  |
| of eukaryotic cells?different environments.have remained unchanged over<br>long periods of time.14. How is life organized in<br>systematic biology?2.E.1: Timing and coordination of<br>specific events are necessary for<br>organism, and these events are<br>regulated by a variety of<br>mechanisms.have remained unchanged over<br>long periods of time.15. What is the difference<br>between and function of cool out structure<br>and function of evolution, structure<br>and function, structure<br>and function of evolution, structure<br>and function, structure<br>and function of evolution, structure<br>and function, structure<br>and function, structure<br>and function, structure<br>and function, structure<br>and function, structure<br>and function, and function of<br>physiological events are regulated<br>by various mechanisms and are<br>important in natural selection.2.E.2.: Timing and coordination of<br>physiological events are regulated by<br>various mechanisms and are<br>important in natural selection.15. What is the difference by<br>various mechanisms and are<br>important in natural selection.3.A.3. The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.Have regulated by<br>simple Mendelian genetics.16. What is the difference<br>by<br>various mechanisms.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.S.A.4: The inheritance pattern of<br>many trai                                                                                                                                                                                              |                             |                                       |                                            | equilibrium). Evaluate survival of |  |
| 14. How is life organized in<br>systematic biology?2.E.1: Timing and coordination of<br>specific events are necessary for<br>the normal development of an<br>organism, and these events are<br>regulated by a variety of<br>mechanisms.long periods of time.2.E.2: Timing and coordination of<br>physiological events are regulated<br>by multiple mechanisms.2.E.2: Timing and coordination of<br>physiological events are regulated<br>by avariety of<br>mechanisms.13.A.3: The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>masy rages (ramsmission) of genes<br>from parent to offspring.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.3.A.2: Dislogical systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                       |                                            |                                    |  |
| <ul> <li>Systematic biology?</li> <li>15. What is the difference between the kingdoms in terms of evolution, structure, and function of structures, processes, organization, role in biosphere and life cycles?</li> <li>26.2. Timing and coordination of physiological events are regulated by a variety of mechanisms.</li> <li>27.2. Timing and coordination of of behavior are regulated by multiple mechanisms.</li> <li>28.2. Timing and coordination of of behavior are regulated by variety of mechanisms.</li> <li>26.2. Timing and coordination of of behavior are regulated by multiple mechanisms.</li> <li>27.3. The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring.</li> <li>37.4. The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.</li> <li>37.2.2. Biological systems have multiple processes that increase</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                       | different environments.                    |                                    |  |
| 15. What is the difference<br>between the kingdoms in<br>terms of evolution, structure<br>and function of structures,<br>processes, organization, role<br>in biosphere and life cycles?specific events are necessary for<br>the normal development of an<br>organism, and these events are<br>regulated by a variety of<br>mechanisms.2.E.2: Timing and coordination of<br>bybysiological events are regulated<br>by multiple mechanisms.2.E.2: Timing and coordination<br>of behavior are regulated by<br>various mechanisms.3.A.3: The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.3.C.2: Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                       | <b>2.E.1</b> : Timing and coordination of  | iong perious of time.              |  |
| between the kingdoms in<br>terms of evolution, structures<br>and function of structures,<br>processes, organization, role<br>in biosphere and life cycles?the normal development of an<br>organism, and these events are<br>regulated by a variety of<br>mechanisms.2.E.2: Timing and coordination of<br>physiological events are regulated<br>by multiple mechanisms.2.E.2: Timing and coordination<br>of behavior are regulated by<br>various mechanisms and are<br>important in natural selection.3.A.3: The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>sumple Mendelian genetics.3.C.2: Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                       |                                            |                                    |  |
| and function of structures,<br>processes, organization, role<br>in biosphere and life cycles?regulated by a variety of<br>mechanisms.2.E.2: Timing and coordination of<br>physiological events are regulated<br>by multiple mechanisms.2.E.2: Timing and coordination<br>of behavior are regulated by<br>various mechanisms and are<br>important in natural selection.3.A: The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring.3.A: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.3.C:2: Biological systems have<br>multiple processes that increase3.C:2: Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                       | the normal development of an               |                                    |  |
| processes, organization, role<br>in biosphere and life cycles?mechanisms.2.E.2: Timing and coordination of<br>physiological events are regulated<br>by multiple mechanisms.2.E.2: Timing and coordination<br>of behavior are regulated by<br>various mechanisms and are<br>important in natural selection.3.A.3: The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.3.C.2: Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                       |                                            |                                    |  |
| in biosphere and life cycles?2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms.E2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection.3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genese from parent to offspring.3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.3.A.2: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.3.C.2: Biological systems have multiple processes that increase3.C.2: Biological systems have multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | · · · · · · · · · · · · · · · · · · · |                                            |                                    |  |
| 2.E.2: Timing and coordination of<br>physiological events are regulated<br>by multiple mechanisms.E2.E.3: Timing and coordination<br>of behavior are regulated by<br>various mechanisms and are<br>important in natural selection.3.A.3: The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.3.C.2: Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                       | mechanisms.                                |                                    |  |
| physiological events are regulated<br>by multiple mechanisms.E2.E.3: Timing and coordination<br>of behavior are regulated by<br>various mechanisms and are<br>important in natural selection.3.A.3: The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.3.C.2: Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | in biosphere and fire eyeles:         | <b>2.E.2</b> : Timing and coordination of  |                                    |  |
| <ul> <li>E2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection.</li> <li><b>3.A.3</b>: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring.</li> <li><b>3.A.4</b>: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.</li> <li><b>3.C.2</b>: Biological systems have multiple processes that increase</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                       |                                            |                                    |  |
| of behavior are regulated by<br>various mechanisms and are<br>important in natural selection. <b>3.A.3</b> : The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring. <b>3.A.4</b> : The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics. <b>3.C.2</b> : Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                       | by multiple mechanisms.                    |                                    |  |
| of behavior are regulated by<br>various mechanisms and are<br>important in natural selection. <b>3.A.3</b> : The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring. <b>3.A.4</b> : The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics. <b>3.C.2</b> : Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                       |                                            |                                    |  |
| <ul> <li>various mechanisms and are<br/>important in natural selection.</li> <li><b>3.A.3</b>: The chromosomal basis of<br/>inheritance provides an<br/>understanding of the pattern of<br/>passage (transmission) of genes<br/>from parent to offspring.</li> <li><b>3.A.4</b>: The inheritance pattern of<br/>many traits cannot be explained by<br/>simple Mendelian genetics.</li> <li><b>3.C.2</b>: Biological systems have<br/>multiple processes that increase</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                                       |                                            |                                    |  |
| important in natural selection.3.A.3: The chromosomal basis of<br>inheritance provides an<br>understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring.3.A.4: The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.3.C.2: Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                       |                                            |                                    |  |
| <ul> <li>3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring.</li> <li>3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.</li> <li>3.C.2: Biological systems have multiple processes that increase</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                       |                                            |                                    |  |
| <ul> <li>inheritance provides an<br/>understanding of the pattern of<br/>passage (transmission) of genes<br/>from parent to offspring.</li> <li><b>3.A.4</b>: The inheritance pattern of<br/>many traits cannot be explained by<br/>simple Mendelian genetics.</li> <li><b>3.C.2</b>: Biological systems have<br/>multiple processes that increase</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                       | -                                          |                                    |  |
| understanding of the pattern of<br>passage (transmission) of genes<br>from parent to offspring. <b>3.A.4</b> : The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics. <b>3.C.2</b> : Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                       |                                            |                                    |  |
| passage (transmission) of genes<br>from parent to offspring. <b>3.A.4</b> : The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics. <b>3.C.2</b> : Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                       |                                            |                                    |  |
| from parent to offspring.<br><b>3.A.4</b> : The inheritance pattern of<br>many traits cannot be explained by<br>simple Mendelian genetics.<br><b>3.C.2</b> : Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                       |                                            |                                    |  |
| <ul> <li>3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics.</li> <li>3.C.2: Biological systems have multiple processes that increase</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                       |                                            |                                    |  |
| many traits cannot be explained by simple Mendelian genetics. <b>3.C.2</b> : Biological systems have multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                       |                                            |                                    |  |
| simple Mendelian genetics.<br><b>3.C.2</b> : Biological systems have<br>multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                       |                                            |                                    |  |
| <b>3.C.2</b> : Biological systems have multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                       |                                            |                                    |  |
| multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                                       | simple mendenan genetics.                  |                                    |  |
| multiple processes that increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                                       | <b>3.C.2</b> : Biological systems have     |                                    |  |
| genetic variation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                       | multiple processes that increase           |                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                       | genetic variation.                         |                                    |  |

| 2 C 2. Viral configstion results in         |  |
|---------------------------------------------|--|
| <b>3.C.3</b> : Viral replication results in |  |
| genetic variation, and viral                |  |
| infection can introduce genetic             |  |
| variation into the hosts.                   |  |
| 4 D 2. Internetions between and             |  |
| <b>4.B.3</b> : Interactions between and     |  |
| within populations influence                |  |
| patterns of species distribution and        |  |
| abundance.                                  |  |
|                                             |  |
| <b>4.B.4</b> : Distribution of local and    |  |
| global ecosystems changes over              |  |
| time.                                       |  |
|                                             |  |
| <b>4.C.1</b> : Variation in molecular       |  |
| units provides cells with a wider           |  |
| range of functions.                         |  |
|                                             |  |
| <b>4.C.2</b> : Environmental factors        |  |
| influence the expression of the             |  |
| genotype in an organism                     |  |
|                                             |  |
| <b>4.C.3</b> : The level of variation in a  |  |
| population affects population               |  |
| dynamics.                                   |  |
|                                             |  |
| <b>4.C.4</b> : The diversity of species     |  |
| within an ecosystem may                     |  |
| influence the stability of the              |  |
| ecosystem.                                  |  |
|                                             |  |
|                                             |  |

| Unit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plant Diversity – Form and Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 Weeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | According to science, prokaryotic diversity reflects the origins of life. Viruses may have evolved many times. Protists are critical components of many ecosystems. Flowers and fruits increase the reproductive success of angiosperms. Seeds protect the plant embryos. Major groups of Fungi differ in their life cycles. Life on land contributed to vertebrate diversification. The plant body is organized and constructed in a distinctive way. Plants acquire mineral nutrients from the soil. Plant develop in response to the environment. Angiosperms reproduce sexually. Plants adapt to environmental stresses.<br>AP Laboratory #11 – Transpiration / Science Practices 1-7                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Key Understandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Essential Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PA Academic<br>Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Terminology                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <ul> <li>Enduring understanding 2.A:<br/>Growth, reproduction and<br/>maintenance of the organization of<br/>living systems require free energy<br/>and matter.</li> <li>Enduring understanding 2.C:<br/>Organisms use feedback<br/>mechanisms to regulate growth and<br/>reproduction, and to maintain<br/>dynamic homeostasis.</li> <li>Enduring understanding 2.D:<br/>Growth and dynamic homeostasis of<br/>a biological system are influenced<br/>by changes in the system's<br/>environment</li> <li>Enduring understanding 2.E:<br/>Many biological processes involved<br/>in growth, reproduction and<br/>dynamic homeostasis include<br/>temporal regulation and<br/>coordination.</li> <li>Enduring understanding 3.B:<br/>Expression of genetic information<br/>involves cellular and molecular</li> </ul> | <ol> <li>What are the organs of a plant?</li> <li>How do vibrio populations detect when<br/>they are dense enough to produce<br/>bioluminescence?</li> <li>Red tides are harmful, but can<br/>dinoflagellates also be beneficial to<br/>marine ecosystems?</li> <li>What was Darwin's explanation for the<br/>three distinct flowers growing on a<br/>single orchid plant?</li> <li>Have antibiotics derived from fungi<br/>eliminated the danger of bacterial<br/>diseases in human populations?</li> <li>Besides the insects, which other groups<br/>of animals are thought to contain many<br/>more species than are known at present?</li> <li>What are the properties of the kenaf<br/>plant that make it suitable for<br/>papermaking?</li> <li>How can soil be managed for optimal<br/>plant growth?</li> <li>How did an understanding of<br/>angiosperm reproduction allow<br/>floriculturists to develop a commercially<br/>successful poinsettia?</li> <li>What changes in their growth patterns<br/>made the new strains of cereal crops<br/>produced by the green revolution so</li> </ol> | <ul> <li>2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization.</li> <li>2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes.</li> <li>2.C.2: Organisms respond to changes in their external environments.</li> <li>2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis.</li> <li>2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis.</li> <li>2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms.</li> </ul> | <ul> <li>3.1.10.A8.<br/>Investigate the spatial<br/>relationships of<br/>organisms' anatomical<br/>features using specimens,<br/>models, or computer<br/>programs.</li> <li>3.1.12.A6.<br/>Analyze how cells in<br/>different tissues/organs<br/>are specialized to perform<br/>specific functions.</li> <li>3.1.12.A5.<br/>Analyze how structure is<br/>related to function at all<br/>levels of biological<br/>organization from<br/>molecules to organisms.</li> <li>3.1.10.A3.<br/>Compare and contrast the<br/>life cycles of different<br/>organisms.</li> <li>3.1.12.A2.<br/>Evaluate how organisms<br/>must derive energy from</li> </ul> | Bacilli<br>Helices<br>Cocci<br>Gram-positive<br>Gram-negative<br>Mycoplasmas<br>Cyanobacteria<br>Spirochetes<br>Biofilms<br>Nitrifiers<br>Endosymbiosis<br>Rhizaria<br>Conjugation<br>Seed plants<br>Overtopping<br>Pollen tube<br>Ovule<br>Pollen grains<br>Gymnosperms<br>Angiosperms<br>Carpels<br>Monoecious<br>Dioecious<br>Monocots<br>Eudicots<br>Yeasts<br>Coenocytic<br>Symbiotic |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

|                                     | 1                                     | 1 | D1                     |
|-------------------------------------|---------------------------------------|---|------------------------|
| Enduring understanding 3.D:         | and intracellular signal              |   | Plasmogamy             |
| Cells communicate by generating,    | transmissions mediate gene            |   | Sponges                |
| transmitting and receiving chemical | expression.                           |   | Radial symmetry        |
| signals.                            |                                       |   | Bilaterial symmetry    |
| -                                   | <b>3.D.1</b> : Cell communication     |   | Placozoans             |
| Enduring understanding 3.E:         | processes share common                |   | Polyp                  |
| Transmission of information results | features that reflect a shared        |   | Medusa                 |
| in changes within and between       | evolutionary history.                 |   | Planula                |
|                                     | evolutionary instory.                 |   | Crustaceans            |
| biological systems                  |                                       |   |                        |
|                                     | <b>3.D.2</b> : Cells communicate with |   | Roots                  |
| Enduring understanding 4.A:         | each other through direct contact     |   | Root system            |
| Interactions within biological      | with other cells or from a            |   | Stems                  |
| systems lead to complex properties. | distance via chemical signaling.      |   | Leaves                 |
|                                     |                                       |   | Primary growth         |
| Enduring understanding 4.B:         | <b>3.D.3</b> : Signal transduction    |   | Secondary growth       |
| Competition and cooperation are     | pathways link signal reception        |   | Root cap               |
| important aspects of biological     | with cellular response.               |   | Zone of cell division  |
| systems.                            | with centular response.               |   | Vascular cambium       |
| systems.                            | 2 D 4 Classical                       |   |                        |
|                                     | <b>3.D.4</b> : Changes in signal      |   | Nitrogenase            |
|                                     | transduction pathways can alter       |   | Apoplast               |
|                                     | cellular response.                    |   | Symplast               |
|                                     |                                       |   | Dormancy               |
|                                     | <b>3.E.1</b> : Individuals can act on |   | Germinates             |
|                                     | information and communicate it        |   | Genetic screens        |
|                                     | to others.                            |   | Acid growth hypothesis |
|                                     |                                       |   | Apical hook            |
|                                     | <b>3.E.2</b> : Animals have nervous   |   | Circadian rhythms      |
|                                     | systems that detect external and      |   | Embryo sac             |
|                                     |                                       |   | Perennials             |
|                                     | internal signals, transmit and        |   |                        |
|                                     | integrate information, and            |   | Annuals                |
|                                     | produce responses.                    |   | Biennials              |
|                                     |                                       |   | Grafting               |
|                                     | <b>4.A.3</b> : Interactions between   |   | Stomatal               |
|                                     | external stimuli and regulated        |   | Crypts                 |
|                                     | gene expression result in             |   | Succulence             |
|                                     | specialization of cells, tissues      |   |                        |
|                                     | and organs.                           |   |                        |
|                                     | uno organo.                           |   |                        |
|                                     | <b>4.A.4</b> : Organisms exhibit      |   |                        |
|                                     |                                       |   |                        |
|                                     | complex properties due to             |   |                        |
|                                     | interactions between their            |   |                        |
|                                     | constituent parts.                    |   |                        |
|                                     |                                       |   |                        |
|                                     | <b>4.A.5</b> : Communities are        |   |                        |
|                                     | composed of populations of            |   |                        |
|                                     | - rear - repaired of                  |   |                        |

|  | organisms that interact in complex ways.                                                                                 |  |
|--|--------------------------------------------------------------------------------------------------------------------------|--|
|  | <b>4.A.6</b> : Interactions among living systems and with their environment result in the movement of matter and energy. |  |
|  | <b>4.B.2</b> : Cooperative interactions within organisms promote efficiency in the use of energy and matter.             |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Animal Diversity – Form and Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 Weeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Multicellular animals require a stable internal environment. Living systems are temperature-sensitive. Hormones are chemical messengers. The adaptive immune response is specific. Reproduction can be sexual or asexual. Gametogenesis produces haploid cells. Fertilization activates development. Nervous systems consist of neurons and glia. Photoreceptors detect light. The characteristics of muscle cells determine muscle performance. Respiratory gases are transported in the blood. Circulatory systems can be open or closed. Digestive systems break down macromolecules. Excretory systems maintain homeostasis.<br>AP Laboratory #9 –Biotechnology: Restriction Enzyme Analysis, AP Laboratory #10 –Energy Dynamic /Science Practices 1-7                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Key Understandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Essential Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PA Academic Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Terminology                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| <ul> <li>Enduring understanding 2.A:<br/>Growth, reproduction and maintenance<br/>of the organization of living systems<br/>require free energy and matter.</li> <li>Enduring understanding 2.C:<br/>Organisms use feedback mechanisms to<br/>regulate growth and reproduction, and<br/>to maintain dynamic homeostasis.</li> <li>Enduring understanding 2.D: Growth<br/>and dynamic homeostasis of a<br/>biological system are influenced by<br/>changes in the system's environment</li> <li>Enduring understanding 2.E: Many<br/>biological processes involved in<br/>growth, reproduction and dynamic<br/>homeostasis include temporal<br/>regulation and coordination.</li> <li>Enduring understanding 3.B:<br/>Expression of genetic information<br/>involves cellular and molecular<br/>mechanisms.</li> <li>Enduring understanding 3.D: Cells<br/>communicate by generating,<br/>transmitting and receiving chemical</li> </ul> | <ol> <li>What can ground squirrels<br/>do to lower the metabolic<br/>demands of surviving<br/>through the winter?</li> <li>How does each of the<br/>following systems contribute<br/>to the maintenance of<br/>homeostasis in animals?</li> <li>Cardiovascular and<br/>respiratory system in<br/>relation to gas exchange</li> <li>Digestive system in terms<br/>of nutrient absorption</li> <li>Endocrine system</li> <li>Nervous system in terms<br/>of sensory perception and<br/>response</li> <li>How do the transformative<br/>effects of testosterone<br/>exemplify the way many<br/>hormones work?</li> <li>How can a person survive an<br/>infection and be resistant to<br/>further infection?</li> <li>How does the Sonic<br/>hedgehog pathway control<br/>development of the<br/>vertebrate brain and eyes?</li> <li>How can a small brain</li> </ol> | <ul> <li>2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization.</li> <li>2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes.</li> <li>2.C.2: Organisms respond to changes in their external environments.</li> <li>2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis.</li> <li>2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis.</li> <li>2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms.</li> <li>3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene</li> </ul> | <ul> <li>3.1.10.A8.<br/>Investigate the spatial<br/>relationships of organisms'<br/>anatomical features using<br/>specimens, models, or computer<br/>programs.</li> <li>3.1.12.A6.<br/>Analyze how cells in different<br/>tissues/organs are specialized to<br/>perform specific functions.</li> <li>3.1.12.A5.<br/>Analyze how structure is related to<br/>function at all levels of biological<br/>organization from molecules to<br/>organisms.</li> <li>3.1.10.A3.<br/>Compare and contrast the life<br/>cycles of different organisms.</li> <li>3.1.12.A2.<br/>Evaluate how organisms must<br/>derive energy from their<br/>environment or their food in order<br/>to survive.</li> </ul> | Tissues<br>Organs<br>Organ systems<br>Negative feedback<br>Positive feedback<br>Metabolic rate<br>Endotherms<br>Metabolism<br>BMR<br>Hypothalamus<br>Endocrine cells<br>Target cells<br>Hormones<br>Peptide hormones<br>Thyroid gland<br>Pituitary gland<br>Androgens<br>Estrogens<br>Progesterone<br>Pathogens<br>Innate immunity<br>Adaptive immunity<br>Inflammation<br>Cellular immune<br>response<br>Mast cells<br>Immunoglobulin<br>T cells<br>Regeneration |  |

|                                          | personality ad behavior?          | <b>3.D.1</b> : Cell communication                                       | Spawing                         |
|------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|---------------------------------|
| Enduring understanding 4.A:              | 7. How do kangaroo rats,          | processes share common features                                         | Germ cells                      |
| Interactions within biological systems   | rattlesnakes, owls and bats       | that reflect a shared evolutionary                                      | Cleavage                        |
| lead to complex properties.              | see in the dark?                  | history.                                                                | Blastula                        |
|                                          | 8. How do musculoskeletal         |                                                                         | Mosaic development              |
| Enduring understanding 4.B:              | systems maximize force            | <b>3.D.2</b> : Cells communicate with                                   | Endoderm                        |
| Competition and cooperation are          | generation and do so at a         | each other through direct contact                                       | Mesoderm                        |
| important aspects of biological systems. | minimal metabolic cost?           | with other cells or from a distance                                     | Ectoderm                        |
|                                          | 9. How are bar-headed geese       | via chemical signaling.                                                 | Forebrain                       |
|                                          | able to sustain the high          |                                                                         | Hindbrain                       |
|                                          | metabolic cost of flight at       | <b>3.D.3</b> : Signal transduction                                      | Midbrain                        |
|                                          | altitudes higher than Mount       | pathways link signal reception                                          | Extraembryonic                  |
|                                          | Everest?                          | with cellular response.                                                 | membranes                       |
|                                          | 10. What are the critical factors |                                                                         | Neurons                         |
|                                          | which determine whether a         | <b>3.D.4</b> : Changes in signal                                        | Glia                            |
|                                          | person recovers from a heart      | transduction pathways can alter                                         | Afferent neurons                |
|                                          | attack?                           | cellular response.                                                      | Efferent neurons                |
|                                          | 11. How does food provide         |                                                                         | Membrane potential              |
|                                          | energy and nutrients?             | <b>4.A.3</b> : Interactions between                                     | Resting potential               |
|                                          | 12. How do excretory systems      | external stimuli and regulated                                          | Sodium-potassium pump           |
|                                          | of animals maintain               | gene expression result in                                               | Voltage-gated channels          |
|                                          | homeostasis?                      | specialization of cells, tissues and                                    | Photoreceptors                  |
|                                          |                                   | organs.                                                                 | Receptor proteins               |
|                                          |                                   | <b>1 A 1</b> : Organisms aphibit complex                                | Olfaction gestation<br>Eye cups |
|                                          |                                   | <b>4.A.4</b> : Organisms exhibit complex properties due to interactions | Photosensitivity                |
|                                          |                                   | between their constituent parts.                                        | Tympanic membrane               |
|                                          |                                   | between men constituent parts.                                          | Oval window                     |
|                                          |                                   | <b>4.A.5</b> : Communities are composed                                 | Retina                          |
|                                          |                                   | of populations of organisms that                                        | Rod cells                       |
|                                          |                                   | interact in complex ways.                                               | Cone cells                      |
|                                          |                                   |                                                                         | Skeletal systems                |
|                                          |                                   | <b>4.A.6</b> : Interactions among living                                | Osteoblasts                     |
|                                          |                                   | systems and with their                                                  | Compact bone                    |
|                                          |                                   | environment result in the                                               | Joints                          |
|                                          |                                   | movement of matter and energy.                                          | Tendons                         |
|                                          |                                   |                                                                         | Ligaments                       |
|                                          |                                   | <b>4.B.2</b> : Cooperative interactions                                 | Respiratory gases               |
|                                          |                                   | within organisms promote                                                | Alveoli                         |
|                                          |                                   | efficiency in the use of energy and                                     | Hemoglobin                      |
|                                          |                                   | matter.                                                                 | Open circulatory system         |
|                                          |                                   |                                                                         | Closed circulatory              |
|                                          |                                   |                                                                         | system                          |
|                                          |                                   |                                                                         | Capillaries                     |
|                                          |                                   |                                                                         | Arterioles                      |

|  |  | Venules<br>Ventricle atrium<br>Sinoatrial<br>Pacemaker<br>Macronutrients<br>Micronutrients<br>Essential amino acids<br>Urine |
|--|--|------------------------------------------------------------------------------------------------------------------------------|
|  |  | Osmolarity<br>Kidney<br>Nephron<br>ANP                                                                                       |

| Unit 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ecology and The Biosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Time Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 Weeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ecological systems vary in space and over time. Human activities affect ecological systems on a global scale. Life histories determine population growth rates. Ecology provides tools for managing populations. Communities change over space and time. Species diversity affects community function. Climate and nutrients affect ecosystem function. Rapid climate change affects species and communities.<br>AP Laboratory #12 – Fruit Fly Behavior / Science Practices 1-7                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Key Understandings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Essential Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA Academic Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Terminology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| <ul> <li>Enduring understanding 2.A:<br/>Growth, reproduction and maintenance<br/>of the organization of living systems<br/>require free energy and matter.</li> <li>Enduring understanding 2.C:<br/>Organisms use feedback mechanisms to<br/>regulate growth and reproduction, and<br/>to maintain dynamic homeostasis.</li> <li>Enduring understanding 2.D: Growth<br/>and dynamic homeostasis of a<br/>biological system are influenced by<br/>changes in the system's environment.</li> <li>Enduring understanding 2.E: Many<br/>biological processes involved in<br/>growth, reproduction and dynamic<br/>homeostasis include temporal<br/>regulation and coordination.</li> <li>Enduring understanding 3.E:<br/>Transmission of information results in<br/>changes within and between biological<br/>systems.</li> <li>Enduring understanding 4.A:<br/>Interactions within biological systems<br/>lead to complex properties.</li> </ul> | <ol> <li>Why did the rangeland<br/>restoration method that<br/>worked in Europe fail to<br/>work in the Borderlands?</li> <li>How does understanding<br/>population Ecology of<br/>disease vectors help us to<br/>combat infectious disease?</li> <li>How could the intricate<br/>relationship between leaf-<br/>cutter ants and fungi<br/>devolped?</li> <li>Can we use principles of<br/>community ecology to<br/>improve methods of coffee<br/>cultivation?</li> <li>How do both the<br/>environment and genes<br/>influence behavior?</li> <li>What are some types of<br/>animal behaviors in various<br/>environments? In response<br/>to varying stimuli?</li> <li>What are the various means<br/>of communication between<br/>animals?</li> <li>How do various behaviors<br/>(societal, altruistic) and<br/>reproductive strategies<br/>influence organisms'<br/>fitness?</li> </ol> | <ul> <li>2.A.1: All living systems require constant input of free energy.</li> <li>2.A.2: Organisms capture and store free energy for use in biological processes.</li> <li>2.C.2: Organisms respond to changes in their external environments.</li> <li>2.D.1: All biological systems from cells and organisms to populations, communities and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy.</li> <li>2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments.</li> <li>2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. in their external environments.</li> <li>2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of</li> </ul> | <ul> <li>4.5.10.D.<br/>Research practices that impact<br/>biodiversity in specific<br/>ecosystems.</li> <li>Analyze the relationship Between<br/>habitat changes to plant and<br/>animal population fluctuations.</li> <li>4.5.12.D.<br/>Analyze the effects of new and<br/>emerging technologies on<br/>biodiversity in specific<br/>ecosystems.</li> <li>Evaluate the impact of laws and<br/>regulations on reducing the<br/>number of threatened and<br/>endangered species.</li> <li>4.1.10.E.<br/>Analyze how humans influence<br/>the pattern of natural changes in<br/>ecosystems over time.</li> <li>4.1.12.E.<br/>Research solutions addressing<br/>human impacts on ecosystems<br/>over time.</li> <li>4.2.10.C.</li> </ul> | Biome<br>Biogeographic regions<br>Physical geography<br>Biogeography<br>Biotic<br>Abiotic<br>Ecology<br>Population<br>Community<br>Biosphere<br>Ecosystem<br>Hadley cells<br>Adiabatically<br>Climate diagram<br>Currents<br>Topography<br>Littoral zone<br>Intertidal zone<br>Photic zone<br>Benthic zone<br>Benthic zone<br>Freshwater biomes<br>Marine biome<br>Habitats<br>BD model<br>Survivorship<br>Fecundity<br>Principle of allocation<br>Doubling time<br>Additive growth<br>BIDE model<br>Corridor |  |
| Enduring understanding 4.B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9. What characteristics of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mechanisms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Explain the relationship between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Density dependent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

|                                                                          | 1 11 .                                        |                                                                         | . 11. 1.4 11 1. 4                                                  | т., с                                         |
|--------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|
| Competition and cooperation are important aspects of biological systems. | populations allow us to analyze them and make | <b>3.E.1</b> : Individuals can act on information and communicate it to | water quality and the diversity of life in a freshwater ecosystem. | Interspecific interactions<br>Limiting source |
| important aspects of biological systems.                                 | predictions?                                  | others.                                                                 | me m a freshwater ecosystem.                                       | Predation                                     |
| Enduring understanding 4.C:                                              | 10. What is the difference                    | others.                                                                 | Explain how limiting factors                                       | Herbivory                                     |
| Naturally occurring diversity among                                      | between exponential and                       | <b>3.E.2</b> : Animals have nervous                                     | affect the growth and reproduction                                 | Parasitism                                    |
| and between components within                                            | logistic growth in                            | systems that detect external and                                        | of freshwater organisms.                                           | Mutualism                                     |
| biological systems affects interactions                                  | populations?                                  | internal signals, transmit and                                          | of freshwater organisms.                                           | Commensalism                                  |
| with the environment.                                                    | 11. What information can we                   | integrate information, and produce                                      | 4.5.12.E.                                                          | Amensalism                                    |
| with the environment.                                                    | obtain by analyzing                           | responses.                                                              | Analyze how consumer demands                                       | Ecological transition                         |
|                                                                          | survivorship curves and                       | -                                                                       | promote the production of                                          | Succession                                    |
|                                                                          | population age structure                      | <b>4.A.4</b> : Organisms exhibit complex                                | pollutants that affect human                                       | Niche                                         |
|                                                                          | diagrams?                                     | properties due to interactions                                          | health.                                                            | NPP                                           |
|                                                                          | 12. What are the ways in which                | between their constituent parts.                                        | noului                                                             | Species richness                              |
|                                                                          | populations interact in                       | <b>4.A.5</b> : Communities are composed                                 |                                                                    | Fluxes                                        |
|                                                                          | communities? Symbiosis                        | of populations of organisms that                                        |                                                                    | Greenhouse gases                              |
|                                                                          | and coevolution?                              | interact in complex ways.                                               |                                                                    | Biogeochemical cycles                         |
|                                                                          | 13. What is the structure of                  | interact in complex ways.                                               |                                                                    | Eutrophication                                |
|                                                                          | ecosystems? How does                          | <b>4.A.6</b> : Interactions among living                                |                                                                    | 1                                             |
|                                                                          | energy flow through                           | systems and with their                                                  |                                                                    |                                               |
|                                                                          | ecosystems and how is                         | environment result in the                                               |                                                                    |                                               |
|                                                                          | matter cycled through them?                   | movement of matter and energy.                                          |                                                                    |                                               |
|                                                                          | 14. What are similarities and                 |                                                                         |                                                                    |                                               |
|                                                                          | differences between the                       | <b>4.B.2</b> : Cooperative interactions                                 |                                                                    |                                               |
|                                                                          | various biomes?                               | within organisms promote                                                |                                                                    |                                               |
|                                                                          | 15. What is the human impact                  | efficiency in the use of energy and                                     |                                                                    |                                               |
|                                                                          | on the biosphere in terms of                  | matter.                                                                 |                                                                    |                                               |
|                                                                          | population growth and                         | <b>4.B.3</b> : Interactions between and                                 |                                                                    |                                               |
|                                                                          | interference/influence with                   | within populations influence                                            |                                                                    |                                               |
|                                                                          | natural systems and cycles?                   | patterns of species distribution and                                    |                                                                    |                                               |
|                                                                          | 16. How do humans interact                    | abundance.                                                              |                                                                    |                                               |
|                                                                          | with other populations?                       |                                                                         |                                                                    |                                               |
|                                                                          |                                               | <b>4.B.4</b> : Distribution of local and                                |                                                                    |                                               |
|                                                                          |                                               | global ecosystems changes over                                          |                                                                    |                                               |
|                                                                          |                                               | time.                                                                   |                                                                    |                                               |
|                                                                          |                                               | <b>4.C.3</b> : The level of variation in a                              |                                                                    |                                               |
|                                                                          |                                               | population affects population                                           |                                                                    |                                               |
|                                                                          |                                               | dynamics.                                                               |                                                                    |                                               |
|                                                                          |                                               |                                                                         |                                                                    |                                               |
|                                                                          |                                               | <b>4.C.4</b> : The diversity of species                                 |                                                                    |                                               |
|                                                                          |                                               | within an ecosystem may                                                 |                                                                    |                                               |
|                                                                          |                                               | influence the stability of the                                          |                                                                    |                                               |
|                                                                          |                                               | ecosystem.                                                              |                                                                    |                                               |