Section:	2 – 8 Analyze Graphs of Polynomial Functions		
Essential Question	When does a graph have a local maximum or local minimum?		

Key Vocab:

Turning Point	Point at which a graph changes from increasing to decreasing or vise versa. → Think vertex of a parabola. Note: Turning points occur on the x-axis when a zero has an even repetition, i.e. double root, quadruple root, etc.	local maximum local minimum - Both are turning points
Local Maximum	The <i>y</i> -coordinate of a turning point, if the point is higher than all other nearby points. Typically, it is a turning point on the graph.	
Local Minimum	The <i>y</i> -coordinate of a turning point, if the point is lower than all nearby points. Typically, it is a turning point on the graph.	

Key Concept:

Turning Points of a Polynomial Function

The graph of every polynomial function of degree n has at most n - 1 turning points.

If a polynomial function has n distinct real zeroes(no repeated solutions), then its graph has *exactly* n-1 turning points.

Example: $f(x) = x^3 - 2x^2 - x + 2$

Degree = 3 -> a Turning Points

(3 real zeroes)

Show:

Ex 1: Graph the function $f(x) = -(x+2)(x-1)^2$

Ex 2: Graph the function $f(x) = x^4 + 4x^3 + 3x^2 - 4x - 4$. Identify the x-intercepts and the points where the local maximums and local minimums occur.

Ex 3: You are making a rectangular box out of a 12-inch by 15 inch-piece of cardboard. The box will be formed by making the cuts shown in the diagram and folding up the sides. What is the maximum possible volume for the box?

V= l.w.h

$$V = 4x^3 - 54x^2 + 180x$$

Maximum occurs at x 22.2

Closure:

• Must the graph of a function always *cross* the x-axis at its real zeroes? Explain.

It must hit that point on the x-axis, but not necessarily cross.

Ex:

