Section:	3-3 Perform FUNction Operations and Composition	
Essential	What operations can be performed on a pair	
Question	of functions to obtain a third function?	

Key Vocab:

Power FUNction	A function of the form $y = ax^b$ where a is a real number and b is a rational number. Examples: $y = 4x^{1/2}$, $f(x) = -8\sqrt[3]{x}$	
Composition of FUNctions	An operation on functions where $h(x) = (f \circ g)(x) = f(g(x))$. A combination of two functions where one function is performed, then the result is used to perform the second function.	
	The domain of h is the set of all x -values such that x is in the domain of f AND $f(x)$ is in the domain of g .	

Key Concept:

Operations on FUNctions				
Let f and g be any two functions.				
A new function h can be defined by performing any of the four basic operations on f and g .				
Operation	Definition	Example: $f(x) = 5x, g(x) = x + 2$		
Addition	h(x) = f(x) + g(x)	n(x) = 5x + x + 2 = 6x + 2		
Subtraction	h(x) = f(x) - g(x)	h(x)=5x-(x+2)=4x-2		
Multiplication	h(x) = f(x) e g(x)	$h(x) = 5x(x+2) = 5x^2 + 10x$		
Division	$h(x) = \frac{f(x)}{g(x)}$ Caution: You cannot divide by zero!	$h(x) = \frac{5x}{x+2}$		

Domain of the new function h consists of the x-values in the domains of BOTH f and g

Question to Ask: Does x have any restrictions?

Show:

Ex 1: Let $f(x) = 5x^{1/3}$ and $g(x) = -11x^{1/3}$. Use the following operations to find h(x) AND then find the domain of h(x)

a.
$$f(x)+g(x)=h(x)$$

b. $f(x)-g(x)=h(x)$
 $h(x)=5x^{3}+-11x^{3}$
 $h(x)=-6x^{3}$
 $h(x)=16x^{3}$
 $h(x)=16x^{3}$
 $h(x)=16x^{3}$
 $h(x)=16x^{3}$
 $h(x)=16x^{3}$

Ex 2: Let f(x) = 8x and $g(x) = 2x^{5/6}$. Use the following operations to find h(x), then find the domain of h(x).

a.
$$f(x) \otimes g(x) = h(x)$$

b. $\frac{f(x)}{g(x)} = h(x)$
 $h(x) = 8 \times (2x^{5/6})$
 $h(x) = 16 \times (6/6 + 5/6)$
 $h(x) = 4 \times (6/6 + 5/6)$
 $h(x) = 6/6 \times (6/6 + 5/6)$

Ex 3: A small company sells computer printers over the internet. The company's total monthly revenue (R) and costs (C) are modeled by the functions R(x) = 120x and C(x) = 2500 + 75x, where x is the number of printers sold.

Explain the meaning of this difference.

Ex 4: Let f(x) = 3x - 4 and $g(x) = x^2 - 1$. What is the value of f(g(-3))? Comp. Functions $g(-3) = (-3)^2 - 1 = 9 - 1 = 8$ Inside First!

A. -34

B. 8 f(8) = 3(8) - 4 = 24 - 4 = 20Try: g(f(-3))

Domain of Composite Function

- 1. Find domain of the inside function
- 2. Find domain of the new function

Ex 5: Let $f(x) = 6x^{-2}$ and g(x) = 4x + 5. Find the following compositions AND then find their domains.

a.
$$f(g(x))$$

b. $g(f(x))$

c. $g(g(x))$
 $f(4x+5)$
 $g(6x^{-2})$
 $g(4x+5)$
 $g(4x+5)$

Ex 6: Your starting wage for your part-time job was \$6 an hour. All employees get a 5% raise after 6 months. You are given an additional raise of 75-cents per hour as a reward for your outstanding work.

Find your new hourly wage if the 5% raise is applied before the 75-cent raise.

Find your new hourly wage if the 75-cent raise is applied before the 5% raise.

Closure:

- When performing a composition of functions, is the order of composition important? If so, which function must be performed first?
- What is the domain of a function and how do you find it?