

Basic Algebraic Operations

Subject	Grade	Unit	Suggested Timeline
Mathematics	11 - 12	Basic Algebraic Operations	30 days

Grade Level Summary

This course is designed to bridge the gap between Algebra II, Geometry, and collegiate courses in mathematics. Emphasis will be placed on linear, polynomial, rational, trigonometric, exponential, and logarithmic functions, matrices, systems of equations and inequalities, and other algebraic and geometric concepts. Students may use graphing calculators and computer software for various mathematical applications. Both topics and depth of study aim to be consistent with the expectations of a traditional College Algebra course required for many non-math dependent collegiate majors or many associate degree programs.

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry-
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Basic Algebraic Operations

Unit Overview

"Algebra is 'generalized arithmetic.' In arithmetic we add, subtract, multiply, and divide specific numbers. In algebra we use all that we know about arithmetic, but in addition, we work with symbols that represent on o r more numbers. IN this [unit] we review some important basic algebraic operations usually studied in earlier courses." (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings
 1.1 How do you add, subtract, multiply, and divide real numbers? What are the properties of real numbers? 1.2 How do you simplify exponents? What are the properties of radicals? How do you convert between rational exponent and radical forms? 	 Operating over the real number system. Using and identifying the properties of algebra Simplifying exponents Simplifying radicals Operating with polynomials Factoring Operating with rational expressions
1.3 How do you add, subtract, multiply, and divide polynomials?How do you factor polynomials?	
1.4 How do you simplify rational expressions? How do you add, subtract, multiply, and divide rational expressions?	

Focus Standards Addressed in the Unit		
CC.2.1.HS.F.1	Apply and extend the properties of exponents to solve problems with rational exponents.	
CC.2.2.HS.D.2	Write expressions in equivalent forms to solve problems.	

Important Standards Addressed in the Unit

-	m/difference is the sum/difference $b^2 = a^2 + b^2$		sum/difference is found by FOILing a $a^{2} = (a + b)(a + b) = a^{2} + 2ab + b^{2}$	
of its squares: $(a + b)^2 = a^2 + b^2$ 2. Negative exponents yield negative numbers: $x^{-1} = -x$		binomial: $(a + b)^2 = (a + b)(a + b) = a^2 + 2ab + b^2$ 2. Negative exponents yield reciprocals: $x^{-1} = \frac{1}{x}$		
3. The square of a ne	gative number and the negative of re the same: $(-x)^2 = -x^2$		negative number is a positive number of a square number is negative: $D - (x^2) = -x^2$	
4. When simplifying terms cancel.	rational expressions, individual		ng rational expressions, common merator and denominator reduce.	
	and dividing rational expressions, ators are necessary.		<i>subtracting</i> rational expressions, inators are necessary.	
Concepts 1.1 Algebra and Real Numbers	Competencies 1.1.a. Students should be able to subsets of real numbers. 1.1.b. Students should be able to multiply and divide) over the real 1.1.c. Students should be able to properties of real numbers.	operate (add, subtract, l numbers.	Vocabulary Real numbers Set of real numbers Set of integers element subset empty/null set natural numbers	
1.2 Exponents and Radicals	 1.2.a. Students should be able to properties of integer exponents. 1.2.b. Students should be able to notation and standard decimal for 1.2.c. Students should be able to exponent and radical forms. 1.2.d. Students should be able to rational exponents and radicals. 	convert between scientific rm. convert between rational	integers rational numbers irrational numbers equal sets real number line coordinate origin Closure property Associative property	
1.3 Polynomials: Basic Operations and Factoring	1.3.a. Students should be able to polynomials.1.3.b. Students should be able to multiply) with polynomials.1.3.c. Students should be able to able able to able to able to able able to able	operate (add, subtract,	Commutative property Identity property Inverse property Distributive property Exponent	
1.4 Rational Expressions: Basic Operations	 1.4.a. Students should be able to a expressions completely. 1.4.b. Students should be able to multiply, and divide) with rational 	simply rational operate (add, subtract,	Base Scientific notation Square root Cube root Radical Index Principal nth root Simplified form Conjugate	

	Algebraic expression
	Polynomial
	Degree of term
	Degree of polynomial
	Monomial
	Binomial
	Trinomial
	Coefficient
	Like terms
	Factor
	Prime
	Composite
	Least Common Denominator
	Compound Fraction reciprocal

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test – Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a - Student assignment sheets communicate expectations for learning.

3c - Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture

Additional Resources:

Kahn Academy

Created By: Rebecca Myers

Equations and Inequalities

SubjectGradMathematics11 - 12	e Unit Equations and Ine	qualities Suggested Timeline 25 days
-------------------------------	-----------------------------	--------------------------------------

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Equations and Inequalities

Unit Essential Questions

Unit Overview

"Solving equations and inequalities is one of the most important skills in algebra because it can be applied to solving a boundless supply of real-world problems. In this chapter, we will begin with a look at techniques for solving linear equations and inequalities. After a study of complex numbers, we'll return to equations, learning how to solve a variety of nonlinear equations. For each type of equation and inequality we solve, we will look at some real-world problems that can be solved using those solution techniques." (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Key Understandings

	How do you solve linear equations? How can you use linear equations to solve real world problems? How do you convert between inequality and interval notations? How do you solve linear inequalities?	3.	Solving equations: linear, absolute value, complex, and quadratic Solving inequalities Operating over the complex number system Completing the square
2.3	How do you solve absolute value equations and inequalities?		
2.4	How do you add, subtract, multiply, and divide complex numbers? How do you solve complex equations?		
2.5	What are the methods for solving quadratic equations? How can you use quadratic equations to solve word problems?		
2.6	How do you solve radical equations? How do you solve quadratic-type equations?		

Focus Standards Addressed in the Unit

CC.2.2.HS.D.10

Important Standards Addressed in the Unit

Miscon	ceptions		Proper Conceptions	
1.		o eliminate fractions in an		g to eliminate fractions in an
	not the whole numb	need to multiply the fractions and bers by the LCD:		st distribute the LCD completely 1 2
		-	through both side	s: $\frac{1}{x} \cdot x + 1 \cdot x = \frac{2}{x} \cdot x \rightarrow 1 + x = 2$
	$\frac{1}{x} \bullet x + 1 = \frac{2}{x} \bullet x \to 1 + \frac{1}{x}$	1 = 2		
2.		o eliminate fractions in an		g to eliminate fractions in an
	equation, you need denominator by the	to multiply the numerator and the	1	y multiply the numerator by the
			LCD: $\frac{3}{x} \cdot 2x = \frac{5}{2} \cdot 2$	$2x \rightarrow 6 = 5x$
	$\frac{3}{x}\frac{2x}{2x} = \frac{5}{2}\frac{2x}{2x} \rightarrow \frac{6}{2x}$	$\overline{x^2} = \overline{4x}$		
3.	Multiplying or divid	ding by a negative number does	3. Multiplying or div	viding by a negative number
	not change the ineq	uality symbol.	changes the inequ	ality symbol.
4.	The absolute value	of a difference is simplified by		e of a difference is simplified by
		is positive, then combining like	e e	ke terms, then making the result
	terms: $ x - 2x = x - 2x $		positive: $ x - 2x $	
5.	The product of two is the square root of	square roots of negative numbers		o square roots of negative numbers of a negative number:
	$\sqrt{-2} \cdot \sqrt{-2} = \sqrt{4} = 2$	-	$\sqrt{-2} \cdot \sqrt{-2} = i\sqrt{2} \cdot$	-
6.		sides of an equation, the square		oth sides of an equation, the same
	of a sum/difference	is the sum/difference of its	rule for squaring	binomials applies, the square of a
	squares: $(a+b)^2 = b^2$	$a^2 + b^2$		found by FOILing a binomial: $(a+b) = a^2 + 2ab + b^2$
	T 1, ' ,	* *0 /1 1 / 1/		
7.		ion, if $a \neq 1$, you do not need to a before completing the square.		nation, if $a \neq 1$, you must divide efore completing the square.
Conce	pts	Competencies	1	Vocabulary
	near Equations	2.1.a. Students should be able to s	1	Algebraic equation
Applica	tions	2.1.b. Students should be able to a equations to solve real-world prof		Domain Solution set
		equations to solve real world pro-		Solve
2.2 Li	near Inequalities	2.2.a. Students should be able to c	convert between inequality	Identity
		and interval notations.		Conditional equation Equivalent equations
		2.2.b. Students should be able to a 2.2.c. Students should be able to a		Standard form of a linear equation
		inequalities to solve real-world pr		Inequality
1 2 41	haalata Valas in			Open interval
2.3 Absolute Value in Equations and inequalities		2.3.a. Students should be able to r distance.	related absolute value and	Closed interval Union
	and mequained	2.3.b. Students should be able to s	solve absolute value and	Intersection
		inequality problems.		Absolute value
		2.3.c. Students should be able to u	use absolute value to solve	Distance on a number line
		radical inequalities.		Imaginary unit Complex number
2.4 Co	omplex Numbers	2.4.a. Students should be able to c	classify the components of	Standard form of a complex
		complex numbers.		number
		2.4.b. Students should be able to a	onerate (add subtract	Pure imaginary number

	multiply, divide) over the complex numbers.	Conjugate of a complex number
	2.4.c. Students should be able to relate complex numbers to	Principal square root of a
	radicals	negative real number
	2.4.d. Students should be able to solve equations involving	Quadratic equation
	complex numbers.	Standard form of quadratic
		equation
2.5 Quadratic Equations	2.5.a. Students should be able to solve quadratic equations	Real root
and Applications	by factoring, the square root property, completing the	Imaginary root
	square, and the quadratic formula.	Zero product property
	2.5.b. Students should be able to apply concepts of quadratic	Square root property
	equations to solve real-world problems.	Complete the square
		Quadratic formula
2.6 Additional Equation-	2.6.a. Students should be able to solve equations involving	Discriminant
Solving Techniques	radicals.	Demand
	2.6.b. Students should be able to solve equations involving	Price-demand equation
	quadratic-type polynomials.	Revenue
		Extraneous solutions
		Quadratic type equations

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test – Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a – Student assignment sheets communicate expectations for learning.

3c – Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Kahn Academy

Created By: Rebecca Myers

Graphs

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Graphs

Unit Overview

"Equations and inequalities are algebraic objects. A graph, on the other hand, is a geometric object such as a line, circle, or parabola. The idea of visualizing an equation or inequality by means of a graph was crucial to the development of analytic geometry, a subject that combines algebra nd geometry. In this chapter, we study the fundamentals of analytic geometry: The Cartesian coordinate system, name after the French mathematician and philosopher René Descartes (1596-1650); the calculation of distances in the plane; and equations of lines and circles. We conclude the chapter by applying linear models to solve real-world problems." (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings
3.1 How do you graph a point? How do you use symmetry to aid in graphing?3.2 How do you find the distance between two points? How do you find the midpoint between two points? How do you write the equation of a circle?	 Graphing Writing equations Characteristics of slope Finding regression models
3.3 What is slope?How do you write the equation of a line?How do you write the equations for parallel and perpendicular lines?	
3.4 How do you find a linear regression model?	

CC.2.2.HS.D.7	Create and graph equations or inequalities to describe numbers or relationships.
CC.2.2.HS.C.6	Interpret functions in terms of the situations they model.

Focus Standards Addressed in the Unit

CC.2.4.HS.B.3

Important Standards A	dressed in the Unit		
	Type the square of a square the		The number is a positive number square number is negative: $y = -x^2$.
form of the equatio	enter of a circle given the standard n, h and k are the same signs given $(-3)^2 + (y+2)^2 = 4 \rightarrow C : (-3,2)$		ar of a circle given the standard and <i>k</i> are the opposite signs → $C: (3, -2)$
	ntercept form of a linear equation b in the standard form of the linear	3. The <i>b</i> in the slope-inter is the <i>y</i> -intercept of the standard form of the lin coefficient.	cept form of a linear equation line whereas the <i>B</i> in the near equation is only a
Concepts 3.1 Cartesian Coordinate Systems	Competencies 3.1.a. Students should be able to vocabulary associated with the Ca 3.1.b. Students should be able to points. 3.1.c. Students should be able to	artesian coordinate system. graph equations using individual	Vocabulary Cartesian Coordiante system Rectangular Coordinate system Horizontal axis Vertical axis Ouadrants
3.2 Distance in the Plane	the distance between two points 3.3.b. Students should be able to the midpoint between two points	able to use the midpoint formula to find pointsOrigin Graphable to write the standard form of the s.Solution Solution set	
3.3 Equations of Line	 3.3.a. Students should be able to representations. 3.3.b. Students should be able to multiple representations. 3.3.c. Students should be able to multiple forms. 3.3.d. Students should be able to perpendicular lines. 	find the slope of a line given convert a linear equation into	Graph of an equation in two variables Point-by-point plotting Reflection Symmetry Distance Midpoint Circle Radius Center
3.4 Linear Equations and Models	3.4.a. Students should be able to change.3.4.b. Students should be able to world applications.3.4. c. Students should be able to model real-world problems.	interpret linear models for real-	Standard form of the circle equation Standard form of a linear equation y-intercept x-intercept rise run slope slope-intercept form point-slope form parallel perpendicular mathematical model linearly related

	rate of change speed
	velocity
	average rate of change
	regression analysis
	curve fitting
	•
	curves
	scatter plot
	extrapolation
i	interpolation
	predictions
	inear regression
	regression line

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test - Each unit will include a summative written test.

Unit Project – This unit will include a project which combines the use of technology with concepts learned throughout the chapter.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a – Student assignment sheets communicate expectations for learning.

3c - Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Additional Resources:

Kahn Academy

Created By: Rebecca Myers

Functions

Subject	Grade	Unit	Suggested Timeline
Mathematics	11 - 12	Functions	Suggested Timeline 28 days

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Functions

Unit Overview

"The function concept is one of the most important ideas in mathematics. To study math beyond the elementary level, you absolutely need to have a solid understanding of functions and their graphs. In this chapter, you'll learn the fundamentals of what functions are all about, and how to apply them." (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings
4.1 What is a function?	1. The distinction between a function and a relation
4.2 How do you graph linear functions? How do you graph piecewise functions?	 Function notation Graphing: linear, quadratic, and inverse functions Transformations of functions
4.3 How do the properties of transformations connect equations and graphs?What are even and odd functions?	 5. Finding regression models 6. Compositions of functions 7. Inverse functions
4.4 How do you graph quadratic functions?How do you solve quadratic inequalities?How do you find a quadratic regression model?	
4.5 How do you add, subtract, and multiply functions? How do you perform a composition of functions?	
4.5 What are one-to-one functions?How do you find inverse functions?How do you graph inverse functions?	

Focus Standards Addressed in the Unit	
CC.2.2.HS.D.8	Apply inverse operations to solve equations or formulas for a given variable.
CC.2.2.HS.D.7	Create and graph equations or inequalities to describe numbers or relationships.
CC.2.2.HS.C.4	Interpret the effects transformations have on functions and find the inverses of functions.
CC.2.2.HS.C.1	Use the concept and notation of functions to interpret and apply them in terms of their context
CC.2.1.HS.F.7	Apply concepts of complex numbers in polynomial identities and quadratic equations to solve problems.

Important Standards Addressed in the Unit

CC.2.2.HS.D.10	Represent, solve, and interpret equations/inequalities and systems of equations/inequalities algebraically and graphically.
CC.2.2.HS.C.2	Graph and analyze functions and use their properties to make connections between the different representations.

Misconceptions	Proper Conceptions
1. $f(x)$ means f times x.	1. $f(x)$ is the function notation that means the function f evaluated at each point x .
2. $f(x+c)$ translates the graph <i>c</i> units to the right and $f(x-c)$ translates the graph <i>c</i> units to the left.	2. $f(x+c)$ translates the graph <i>c</i> units to the left and $f(x-c)$ translates the graph <i>c</i> units to the right.
3. Domain describes the limits on the <i>y</i> -values of a function. (misconception is most commonly made when using graphical representations)	3. Domain describes the limits on the <i>x</i> -values of a function.
4. In order to solve quadratic inequalities, you must set each factor greater than/less than zero (which is the same process as solving quadratic equations).	4. In order to solve quadratic inequalities, you must use sign analysis on a number line or graph (which differ from the process for solving quadratic equations).
5. $f \circ g$ means f times g .	5. $f \circ g$ means to compose functions f and g : $f(g(x))$.
6. $f^{-1}(x)$ means $\frac{1}{f(x)}$.	6. $f^{-1}(x)$ is the notation for an inverse function.

Concepts	Competencies	Vocabulary
4.1 Functions	4.1.a. Students should be able to define and identify functions	Functions
	from multiple representations.	Domain
	4.1.b. Students should be able to utilize function notation.	Range
	4.1.c. Students should be able to apply the concept of functions to	Independent variable
	real-world problems.	Dependent variable
		Implied domain
4.2 Graphing Functions	4.2.a. Students should be able to graph linear functions given	f(x)
1	multiple representations	difference quotient
	4.2.b. Students should be able to graph piecewise-defined	graphing a function
	functions.	zero
		root
4.3 Transformations of	4.3.a. Students should be able to identify basic parent functions.	increasing
Functions	4.3.b. Students should be able to use transformations of functions	decreasing

	 to shift graphs horizontally and vertically. 4.3.c. Students should be able to use transformations of functions to reflect graphs. 4.3.d. Students should be able to use transformations of functions to stretch and shrink graphs. 4.3.e. Students should be able to identify even and odd functions and use the properties of even and odd functions to aid in 	constant constant function identity function absolute-value function piece-wise function continuous greatest integer function
	graphing.	transformation vertical shift
4.4. Quadratic Functions	4.4.a. Students should be able to graph quadratic functions.4.4.b. Students should be able to write the equation of a parabola given multiple representations.	horizontal shift reflection rigid transformation
	4.4.c. Students should be able to apply the concepts of quadratic equations to solve real-world problems.4.4.d. Students should be able to solve quadratic inequalities.	non-rigid transformation expansion contraction
	4.4.e. Students should be able to quadratic regressions to model real-world problems.	even function odd function symmetry
4.5 Operations on Functions; Compositions	4.5.a. Students should be able to operate (add, subtract, multiply, divide) on functions.4.5.b. Students should be able to compose multiple functions.4.5.c. Students should be able to apply the concepts of functions to solve real-world problems.	vertex parabola general form of a quadratic equation standard form of a quadratic equation
4.6 Inverse Functions	 4.6.a. Students should be able to identify one-to-one functions given multiple representations. 4.6.b. Students should be able to find inverse functions. 4.6.c. Students should be able to apply the concepts of inverse functions to solve real-world problems. 4.6.d. Students should be able to graph inverse functions. 	complete the square axis of symmetry maximum minimum quadratic inequality break-even points domain composition of functions
		one-to-one function inverse function

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test - Each unit will include a summative written test.

Unit Project – This unit will include a project which combines the use of technology with concepts learned throughout the chapter.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

- 3a Student assignment sheets communicate expectations for learning.
- 3c Instructional materials and unit project activities engage students in learning.
- 3d-Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and

continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Additional Resources:

Kahn Academy

Created By:

Rebecca Myers

Polynomial and Rational Functions

Subject	Grade	Unit	Suggested Timeline
Mathematics	11 - 12	Polynomial and Rational Functions	20 days

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions

5 – Polynomial and Rational Functions

- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Polynomial and Rational Functions

Unit Overview

"To model more complicated phenomena, [in this chapter] we will study the more general class of polynomial functions...A polynomial function can have many turning point. We will investigate the graphs and zeros of polynomial and apply that knowledge to study functions that can be written as quotients of polynomials, that is the rational functions. Finally, we will use the language of variation to describe a wide range of mathematical models used in engineering and the physical, social, and health sciences. (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings
5.1 What are the properties of polynomial functions? How do you graph polynomial functions? How do you divide polynomials? What are the remainder and factor theorems?	 Graphing: polynomial and rational functions Solving polynomial equations that are unfactorable Solving inequalities: polynomial and rational functions
5.2 What are the methods for finding the real zeros of a polynomial? How do you solve polynomial inequalities?	4. Using variation models to solve problems
5.3 How do you find all zeros of a polynomial?	
5.4 What are the properties of rational functions? How do you find vertical, horizontal, and oblique asymptotes of a rational function? How do you graph rational functions? How do you solve rational inequalities?	
5.5 What are direct, inverse, joint, and combined variation models?	

Focus Standards Addressed in the Unit	
CC.2.2.HS.D.4	Understand the relationship between zeros and factors of polynomials to make generalizations about functions and their graphs.

Important Standards Addressed in the Unit

_

CC.2.2.HS.D.10	Represent, solve, and interpret equations/inequalities and systems of equations/inequalities algebraically and graphically.

Misconceptions 1. In polynomial division, when a term is missing in either the dividend or the divisor, no place holders need to be added before division: $(x^2 + 1) \div (x + 1)$			when a term is missing in the ne divisor, a zero place holder re division:
set each factor great	lynomial inequalities, you must ter than/less than zero (which is solving polynomial equations).	use sign analysis on a n	omial inequalities, you must number line or graph (which s for solving polynomial
3. Horizontal and obli- same graph.	que asymptotes can occur on the	3. Horizontal and oblique the same graph.	asymptotes cannot occur on
4. Values for <i>x</i> that ma are in the domain of	ake the denominator equal to zero f the function.		the denominator equal to zero f the function and create the graph.
Concepts 4.1 Polynomial Functions, Division, and Models	Competencies 5.1.a. Students should be able to polynomial functions given multi 5.1.b. Students should be able to long and synthetic division. 5.1.c. Students should be able to theorems when using polynomial 5.1.d. Students should be able to polynomials to solve real-world p	ple representations. divide polynomials using both apply the remainder and factor division. apply the concepts of	Vocabulary Zero Root Degree of a polynomial Coefficient Turning point Leading term End behavior Polynomial long division Synthetic division
4.2 Real Zeros and Polynomial Inequalities	 5.2.a. Students should be able to real zeros of a polynomial. 5.2.b. Students should be able to bisection methods to find real zer 5.2.c. Students should be able to turning points of polynomial functions. 5.2.d. Students should be able to 5.2.e. Students should be able to polynomial zeros and turning points. 	use the location theorem and os of a polynomial function. approximate real zeros and tions. solve polynomial inequalities. apply the concepts of	Quotient Divisor Remainder Remainder theorem Factor theorem Upper bound Lower bound Location theorem Bisection method Multiplicity
4.3 Complex Zeros and Rational Zeros of Polynomials	5.3.a. Students should be able to a algebra to polynomial functions.5.3.b. Students should be able to real and complex coefficients.5.3.c. Students should be able to 5.3.d. Students should be able to functions.	graph polynomials.	Multiplicity Double root Triple root Rational zero theorem Rational function Vertical asymptote Horizontal asymptote Oblique asymptote Slant asymptote
4.4 Rational Functions and Inequalities	5.4.a. Students should be able to functions.5.4.b. Students should be able to		Direct variation Inverse variation Joint variation 5/14/15 – PA

	asymptotes given multiple representations.5.4.c. Students should be able to analyze the graphs of rational functions given multiple representations.5.4.d. Students should be able to solve rational inequalities.	Combined variation Constant of proportionality
4.5 Variation and Modeling	 5.5.a. Students should be able to identify and write direct variation models 5.5.b. Students should be able to identify and write inverse variation models. 5.5.c. Students should be able to identify and write joint and combined variation models. 5.5.d. Students should be able to apply the concepts of variation modeling to solve real-world problems. 	

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test - Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a – Student assignment sheets communicate expectations for learning.

3c - Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Additional Resources: Kahn Academy

Created By:

Rebecca Myers

Exponential and Logarithmic Functions

Subject	Grade	Unit	Suggested Timeline
Mathematics	11 - 12	Exponential and Logarithmic Functions	25 days

Grade Level Summary

This course is designed to bridge the gap between Algebra II, Geometry, and collegiate courses in mathematics. Emphasis will be placed on linear, polynomial, rational, trigonometric, exponential, and logarithmic functions, matrices, systems of equations and inequalities, and other algebraic and geometric concepts. Students may use graphing calculators and computer software for various mathematical applications. Both topics and depth of study aim to be consistent with the expectations of a traditional College Algebra course required for many non-math dependent collegiate majors or many associate degree programs.

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Exponential and Logarithmic Functions

Unit Overview

In [this chapter] we will study exponential and logarithmic functions. These functions are not algebraic; they belong to the class of transcendental functions. Exponential and logarithmic functions are use to model a surprisingly wide variety of real-world phenomena; growth of populations of people, animals, and bacteria; decay of radioactive substances; epidemics; magnitudes of sounds and earthquakes. These and many other applications will be studied in this chapter. (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings	
6.1 What are the properties of exponential functions? How do you graph exponential functions? What is the number <i>e</i>? How do you solve problems involving compound interest?	 Relationships between exponential and logarithmic equations Solving exponential and logarithmic equations Graphing: exponential equations 	
6.2 How do you use exponential functions to solve real world problems?How do you find exponential regression models?		
6.3 What are the properties of logarithmic functions? What are common and natural logarithms?		
6.4 How do you use logarithmic equations to solve real world problems?How do you find logarithmic regressions?		

6.5	How do you solve exponential equations?
	How do you solve logarithmic equations?

Focus Standards Addressed in the Unit

CC.2.2.HS.C.5

Construct and compare linear, quadratic, and exponential models to solve problems.

Important Standards Addressed in the Unit

Misconceptions	Proper Conceptions	
1. $\log M + \log N = \log(M + N)$	1. $\log M + \log N = \log(MN)$	
2. $\log M - \log N = \frac{\log M}{\log N}$	2. $\log M - \log N = \log \frac{M}{N}$	
$3. \left(\log x\right)^2 = \log x^2$	3. $(\log x)^2 = (\log x)(\log x) = 2(\log x)$	

Concepts	Competencies	Vocabulary
6.1 Exponential Functions	6.1.a. Students should be able to identify the properties of	Exponential function
	exponential functions.	Base
	6.1.b. Students should be able to graph exponential functions	Base <i>e</i>
	given multiple representations.	Interest rate
	6.1.c. Students should be able to use exponential functions to	Interest
	calculate compound interest	Principal
		Compound interest
6.2 Exponential Models	6.2.a. Students should be able to use exponential functions to	Continuously compounded
	solve real-world problems.	interest formula
	6.2.b. Students should be able to use exponential regressions to	Doubling time
	model real-world problems.	Growth model
	6.2.c. Students should be able to compare exponential models in	Relative growth rate
	terms of limited and unlimited growth.	Half-life
		Negative growth
6.3 Logarithmic Functions	6.3.a. Students should be able to identify the properties of	Decay model
-	logarithmic functions.	Learning curve
	6.3.b. Students should be able to convert between exponential and	Limited growth
	logarithmic forms.	Unlimited growth
	6.3.c. Students should be able to use common and natural	Logistic growth
	logarithms.	Logarithmic function
	6.3.d. Students should be able to use the change-of-base formula.	Common logarithm
		Natural logarithm
6.4 Logarithmic Models	6.4 a. Students should be able to apply the concepts of logarithms	Change of base formula
-	to solve real-world problems.	Decibel level
	6.4.b. Students should be able to use logarithmic regressions to	Magnitude
	model real-world problems.	Richter scale
	-	catenary
6.5 Exponential and	6.5.a. Students should be able to solve exponential equations.	
Logarithmic Equations	6.5.b. Students should be able to solve logarithmic equations.	
2 1		

Assessments

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test - Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a - Student assignment sheets communicate expectations for learning.

3c - Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e – Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- · Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Additional Resources: Kahn Academy

Created By: Rebecca Myers

Trigonometric Functions

SubjectGradeMathematics11 - 12	Unit Trigonometric Function	s Suggested Timeline 28 days
--------------------------------	---------------------------------------	---------------------------------

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3-Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions

7 – Trigonometric Functions

- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Trigonometric Functions

Unit Overview

"Originally the trigonometric functions were restricted to angels and their applications to the indirect measurement of angles and distances. These functions gradually broke free of these restrictions, and we now have trigonometric functions of real numbers. Modern application range over many types of problems that have little or nothing to do with angles or triangles—applications involving periodic phenomena such as a sound, light, and electrical waves; business cycles; and planetary motion. In our approach to the subject, we define the trigonometric function s both in terms of angles, and coordinates of point on the unit circle. (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings
7.1 How do you convert between radians and degrees?7.2 What are the six trigonometric ratios? How do you solve a right triangle?	 The distinction between radians and degrees Solving right triangles Trigonometric functions and their usage Graphing: trigonometric functions
7.3 How are the trigonometric functions defined? How do you graph the trigonometric functions?	
7.4 What the basic trigonometric identities? How do you find a reference angle?	
7.5 How do you use transformations of functions to graph the trigonometric functions?How do you find the equation from the graph of a trigonometric function?	
7.6 What are the inverse trigonometric functions?	

Focus Standards Addressed in the Unit

CC.2.2.HS.D.1	Interpret the structure of expressions to represent a quantity in terms of its context.

CC.2.2.HS.D.8	Apply inverse operations to solve equations or formulas for a given variable.
CC.2.2.HS.C.7	Apply radian measure of an angle and the unit circle to analyze the trigonometric functions.
CC.2.2.HS.C.8	Choose trigonometric functions to model periodic phenomena and describe the properties of the graphs.
CC.2.3.HS.A.7	Apply trigonometric ratios to solve problems involving right triangles.

Important Standards Addressed in the Unit

CC.2.2.HS.C.2	Graph and analyze functions and use their properties to make connections between the different
	representations.

Misconceptions		Proper Conceptions	
1. $(\sin x)^2 = \sin x^2$		$1. \left(\sin x\right)^2 = \sin^2 x$	
$2. \ \left(\cos x\right)^2 = \cos x$		$2. \ \left(\cos x\right)^2 = \cos^2 x$	
Concepts	Competencies		Vocabulary
7.1 Angles and Their Measures	7.1.a. Students should be able to c7.1.b. Students should be able to cradians and degrees.7.1.c. Students should be able to acalculate linear and angular speed.	onvert angles measures between apply the concepts of angles to	Angle Initial angle Terminal side Vertex Negative angle Positive angle
7.2 Right Triangle Trigonometry	7.2.a. Students should be able to i7.2.b. Students should be able to a7.2.c. Students should be able to s	evaluate the trigonometric ratios.	Coterminal Standard position Quadrantal angle
7.3 Trigonometric Functions; A unit Circle Approach	7.3.a. Students should be able to u circular coordinates.7.3.b. Students should be able to d using the unit circle.7.3.c. Students should be able to g	efine trigonometric functions	Degree Straight angle Right angle Obtuse angle Acute angle Complementary Supplementary
7.4 Properties of Trigonometric Functions	7.4.a. Students should be able to susing the basic trigonometric ident 7.4.b. Students should be able to it the basic trigonometric functions g 7.4.c. Students should be able to it trigonometric functions.	tities. dentify the sign properties of given the quadrant.	Supplementary Seconds Minutes Radian Linear speed Angular speed Right triangle Trigonometric ratios
7.5 More General Trigonometric Functions and Models	 7.5.a. Students should be able to g given an amplitude and period. 7.5.b. Students should be able to g given amplitude, period, and horiz 7.5.c. Students should be able to f harmonic. 7.5.d. Students should be able to to model real-world problems. 	graph sine and cosine functions contal shifts. ind the equation of a simple	Sine Cosine tangent Cotangent Secant Cosecant Reciprocal relationships Complementary
7.6 Inverse Trigonometric Functions	7.6.a. Students should be able to c cosine, and inverse tangent function 7.6.b. Students should be able to g cosine, and inverse tangent function	ons. graph inverse sine, inverse	relationships Cofunction Side opposite Side adjacent Hypotenuse Solve (a right triangle)

	Wrapping function Circular point Reference triangle Reference angle Periodic Fundamental period of <i>f</i> Simple harmonics Sinusoidal regression Inverse sine Inverse cosine
	Inverse tangent

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test - Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a - Student assignment sheets communicate expectations for learning.

3c - Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Additional Resources: Kahn Academy

Created By:

Rebecca Myers

Trigonometric Identities and Conditional Equations

Subject	Grade	Unit	Suggested Timeline
Mathematics	11 - 12	Trigonometric Identities and Conditional Equations	25 days

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions

8 - Trigonometric Identities and Conditional Equations

- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Trigonometric Identities and Conditional Equations

Unit Overview

"Trigonometric functions are widely used in solving real-world problems and in the development of mathematics. Whatever their use, it is often of value to be able to change a trigonometric expression form one form to an equivalent form. This involves the use of identities...[in this chapter we] deal with trigonometric identities, and...conditional trigonometric equations." (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings		
8.1 What are the basic trigonometric identities?	1. Identifying and using trigonometric identities to solve		
8.2 What are the sum, difference, and cofunction identities?	equations.		
8.3 What are the half-angle and double-angle identities?			
8.4 What are the product-sum and sum-product identities?			
8.5 How do you solve trigonometric equations algebraically? How do you solve trigonometric equations graphically?			

Focus Standards Addressed in the Unit	
CC.2.2.HS.C.8	Choose trigonometric functions to model periodic phenomena and describe the properties of the graphs.
СС.2.2.НЅ.С.9	Prove the Pythagorean identity and use it to calculate trigonometric ratios.

Important Standards Addressed in the Unit

Misconceptions	Pro	per Conceptions	
Concepts 8.1 Basic Identities and Their Use	Competencies 8.1.a. Students should be able to algebratic trigonometric identities.	raically prove the	Vocabulary Difference identify for cosine Sum identity for cosine
8.2 sum, Difference, and Cofunction identities	8.2.a. Students should be able to apply identities for sine, cosine, and tangent.8.2.b. Students should be able to apply for sine, cosine, and tangent.		Cofunction identity for sine Cofunction identity for tangent Cofunction identity for
8.3 Double-Angle and Half-angle Identities	8.3.a. Students should be able to apply for sine and cosine.8.3.b. Students should be able to apply sine and cosine.	C	cosine Product-sum identities Sum-product identities Identity equation Conditional equation
8.4 Product-Sum and Sum- Production Identities	8.4.a. Students should be able to apply 8.4.b. Students should be able to apply	-	Construction of function
8.5 Trigonometric Equations	8.5.a. Students should be able to solve to algebraically.8.5.b. Students should be able to solve to graphically.		

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test - Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a - Student assignment sheets communicate expectations for learning.

3c - Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture

Additional Resources:

Kahn Academy

Created By: Rebecca Myers

5/14/15 – PAGE 26

Additional Topics in Trigonometry

Subject	Grade	Unit	Suggested Timeline
Mathematics	11 - 12	Additional Topics in Trigonometry	25 days

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Additional Topics in Trigonometry

Unit Overview

"In [this chapter] a number of additional topics involving trigonometry are considered. First, we return to the problem of solving triangles, not just right triangles, but any triangle. The some of these ideas are used to develop the important concept of vector. With our knowledge of trigonometry, we introduce the polar coordinate system probably the most important coordinate system after the rectangular coordinate system. After considering polar equations and their graphs, we represent complex numbers in polar form. Once a complex number is in polar form, it will be possible to find *n*th powers and *n*th roots of the number using an ingenious theorem established by De Moivre." (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings
 9.1 When can you use the Law of Sines to solve triangles? 9.2 When can you use the Law of Cosines to solve triangles? 9.3 What is a vector? What are the properties of vectors? How do you add and multiply vectors? 	 Using Laws of Sines and Cosines to solve triangles. Vector addition and multiplication Using the polar coordinate system 4.
9.4 How do you convert between polar and rectangular coordinates?How do you graph polar coordinates?How can you use polar coordinates to solve real-world problems?	
9.5 How do you plot points in the complex plane? How do you multiply and divide in the polar form? What is DeMoivre's Theorem?	

Focus Standards Addressed in the Unit		
CC.2.1.HS.F.6	Extend the knowledge of arithmetic operations and apply to complex numbers.	
CC.2.1.HS.F.7	Apply concepts of complex numbers in polynomial identities and quadratic equations to solve problems.	

Important Standards Addressed in the Unit

Misconceptions		Proper Conceptions	
Concepts	Competencies		Vocabulary
9.1 Law of Sines	9.1.a. Students should be able to derive th9.1.b. Students should be able to solve A.9.1.c. Students should be able to solve SS	AS and ASA triangles	Law of sines Oblique triangle Acute
	triangles.	(antoiguous case)	Obtuse Law of cosines
9.2 Law of Cosines	9.2.a. Students should be able to derive th 9.2.b. Students should be able to solve SA		Vector Magnitude
9.3 Students should be	9.3.a. Students should be able to identify	-	Same direction Opposite direction
able to ectors in the Plane	vector. 9.3.b. Students should be able to add and	-	Zero vector Equal vectors
	9.3.c. Students should be able to find unit	vectors.	Standard vectors
	9.3.d. Students should be able to apply the velocity.	e concepts of vectors to	Scalar components Normal vector
	9.3.e. Students should be able to apply the force.	e concepts of vectors to	Tail-to-tip rule Parallelogram rule
9.4 Polar coordinates and	9.4.a Students should be able to identify t	he components of the	Resultant Vector components
Graphs	polar coordinate system.9.4.b. Students should be able to convert	between polar and	Scalar product Force vector
	rectangular coordinates	-	Resultatnt force
	9.4.c. Students should be able to graph po 9.4.d. Students should be able to identify		Apparent velocity Actual velocity
	9.4.e. Students should be able to apply the curves to solve real-world problems.		Static equilibrium Polar coordinate system
			Pole
9.5 Complex Numbers and De Moivre's Theorem	9.5.a. Students should be able to plot num plane.	bers on the complex	Origin Polar axis
	9.5.b. Students should be able to covert b	etween polar and	Graph
	complex rectangular coordinates. 9.5.c. Students should be able to multiply	and divide complex	Point-by-point plotting Rapid polar sketching
	numbers in polar form	-	Cardioid
	9.5.d. Students should be able to apply D 9.5.e. Students should be able to find dist		Four-leafed rose Complex axis
	numbers.	1	Real axis
			Imaginary axis Rectangular form
			Polar form
			Modulus
			Absolute value Mod

	Argument <i>n</i> th root of <i>z</i>

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test - Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a – Student assignment sheets communicate expectations for learning.

3c - Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Additional Resources: Kahn Academy

Created By:

Rebecca Myers

Additional Topics in Analytic Geometry

Subject	Grade	Unit	Suggested Timeline
Mathematics	11 - 12	Additional Topics in Analytic Geometry	25 days

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry

10 - Additional Topics in Analytic Geometry

- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Additional Topics in Analytic Geometry

Unit Overview

"Analytic geometry is the study of geometric objects using algebraic techniques. René Descartes (1596-1650), the French philosopher and mathematician, is generally recognized as the found of the subject. We used analytic geometry...to obtain equations of lines and circles. In [this chapter], we take a similar approach to the study of parabolas, ellipses, and hyperbolas. Each of these geometric objects is a conic section, that is, the intersection f a plane and a cone. We will derive equations for the conic sections and explore a wealth of application in architecture, communications, engineering, medicine, optics, and space science." (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings	
10.1 What is a conic section? How do you write the equation of a parabola as defined by a conic section?	1. Graphing: parabolas, ellipses, and hyperbolas	
10.2 What is an ellipse? How do you write the equation of an ellipse as defined by a conic section?		
10.3 What is a Hyperbola? How do you write the equation of a hyperbola as defined by a conic section?		
10.4 How are translations used in graphing? How are rotations used in graphing?		

 Focus Standards Addressed in the Unit

 CC.2.3.HS.A.14
 Apply geometric concepts to model and solve real world problems.

CC.2.2.HS.D.2	Write expressions in equivalent forms to solve problems.	
CC.2.2.HS.D.5	Use polynomial identities to solve problems.	
CC.2.2.HS.C.2	Graph and analyze functions and use their properties to make connections between the different representations.	
СС.2.3.НЅ.А.10	Translate between the geometric description and the equation for a conic section.	

Important Standards Addressed in the Unit

CC.2.2.HS.D.10	Represent, solve, and interpret equations/inequalities and systems of equations/inequalities algebraically and graphically.
CC.2.2.HS.C.6	Interpret functions in terms of the situations they model.

Misconceptions	Prop	er Conceptions	
Concepts	Competencies		Vocabulary
10.1 Conic Sections:	10.1.a. Students should be able to identi		Parabola
Parabola	10.1.b. Students should be able to graph		Hyperbola
	10.1.c. Students should be able to apply the concepts of parabolas		Degenerate conic
	to solve real-world problems.		Coordinate-free definition
			Focus
10.2 Ellipse	10.2.a. Students should be able to graph	1	Directrix
	10.2.b. Students should be able to apply	the concepts of ellipses	Axis of symmetry
	to solve real-world problems.		Vertex
			Ellipse
10.3 Hyperbola	10.3.a. Students should be able to graph hyperbolas.		Circle
	10.3.b. Students should be able to apply the concepts of		Nappes
	hyperbolas to solve real-world problems		Right circular cone
			Paraboloid
10.4 Translation and	10.4.a. Students should be able to identi		Foci
Rotation of Axes	10.4.b. Students should be able to use tr	anslations of a curve to	Minor axis
	aid in graphing.		Major axis
	10.4.c. Students should be able to identi		Hyperbola
	10.4.d. Students should be able to use ro	otations of a curve to aid	Transvers axis
	in graphing.		Center
	10.4.e. Students should be able to identi	fy conic sections based on	Conjugate axis
	their equations.		Asymptote rectangle
			Translation of coordinate
			axes
			Rotation of coordinate axes
			discriminant

Assessments

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test – Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a - Student assignment sheets communicate expectations for learning.

3c - Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Additional Resources:

Kahn Academy

Created By:

Rebecca Myers

Systems of Equations and Matrices

Subject	Grade	Unit	Suggested Timeline
Mathematics	11 - 12	Systems of Equations and Matrices	25 days

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Systems of Equations and Matrices

Unit Overview

"We have seen many real-world situations where solving an equation is valuable. But the world is a very complicated place, and may more situations lead to more than one variable. In that case, solving a system of equations becomes important. In this chapter, we will study a variety of methods for solving systems of equation. We will begin with linear systems with two or three variables using algebraic techniques similar to those we used for solving individual equations. Then we will introduce a variety of matrix methods for solving linear systems. These methods can be applied to very large systems that model very complicated real-world problems." (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings
11.1 How do you solve a system of equations graphically? How do you solve a system of equations algebraically?	 Solving systems of equations Properties of matrices
11.2 How do you solve a system of equations using Gauss- Jordan elimination?	3. Operating with matrices
11.3 How do you add, subtract, and multiply matrices?	
11.4 How do you find the identity of a matrix? How do you find the inverse of a matrix? How do you solve matrix equations?	
11.5 How do you find first- and second-order determinants? How do you use solve a system of equations using Cramer's Rule?	

Focus Standards Addressed in the Unit

CC.2.2.HS.D.10	Represent, solve, and interpret equations/inequalities and systems of equations/inequalities algebraically and graphically.

CC.2.2.HS.D.8

Important Standards Addressed in the Unit

Misconceptions		Proper Conceptions	
Concepts	Competencies		Vocabulary
11.1 Systems of Linear	11.1.a. Students should be able to solve	e systems of linear	System of linear equations
Equations	equations by graphing.		in two variables
	11.1.b. Students should be able to solve	e systems of linear	Coefficients
	equations by substitution.		Constant terms
	11.1.c. Students should be able to solve	e systems of linear	Solution
	equations by elimination.		Solution set
	11.1.d. Students should be able to apply	v the concepts of systems	Consistent
	of linear equations to solve real-world p		Inconsistent
			Independent
11.2 Solving Systems of	11.2.a. Students should be able to reduce	ce matrices	Unique solution
Linear Equations Using	11.2.b. Students should be able to solve		Dependent
Gauss-Jordan Elimination	elimination.	e systems by Guuss voruun	Substitutions method
Suuss soluun Emmunon	11.2.c. Students should be able to use r	natrices to solve real-world	Elimination by adding
	problems.	numees to solve real world	Equivalent systems
	problems.		Parameter
11.3 Matrix Operations	11.3.a. Students should be able to add,	subtract and multiply	Particular solution
11.5 Wattix Operations	matrices	subtract, and multiply	Equilibrium price
	11.3.b. Students should be able to mult	inly a matrix by a constant	Equilibrium quantity
	11.5.0. Students should be able to man	ipiy a matrix by a constant.	Matrix
11.4 Solving Systems of	11.4.a. Students should be able to find	the identity of a matrix	Element
Linear Equations Using	11.4.b. Students should be able to find		Size of a matrix
Matrix Inverse Methods	matrix.	the inverse of a square	Dimensions of a matrix
waana miverse wiethous	11.4.c. Students should be able to ident	ify and use the properties	Square matrix
	of matrices.	iny and use the properties	Column matrix
	11.4.d. Students should be able to use r	natrix equations to solve	Row matrix
	systems of equations.	liant equations to solve	Double subscript notation
	systems of equations.		Principal diagonal of a
11.5 Determinants and	11.5.a. Students should be able to defin	a first and second order	matrix
Cramer's Rule	determinants.	le first and second order	Augmented coefficient
Chamer's Kule	11.5.b. Students should be able to evalu	usts third order	matrix
	determinants.	uate tillitä oldel	Coefficient matrix
	11.5.c. Students should be able to use C	Tramar's Dula to solva	Constant matrix
	systems of equations.	Liamer's Rule to solve	Row-equivalent
	systems of equations.		1
			Row operations Reduce row echelon form
			Reduced system
			Submatrix
			Gauss-Jordan Elimination
			Zero matrix
			Negative of a matrix
			Matrix product
			Identity for matrix
			multiplication
			Multiplicative inverse of a
			matrix
			Singular matrix
			Determinant
			First-order determinant

Second-order determinant Secondary diagonal Third-order determinant Minor of an element Cofactor of an element Cramer's Rule

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test – Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a - Student assignment sheets communicate expectations for learning.

3c - Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e - Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Additional Resources:

Kahn Academy

Created By: Rebecca Myers

Sequences, Inductions, and Probability

Subject	Grade	Unit	Suggested Timeline
Mathematics	11 - 12	Sequences, Inductions, and	25 days
		Probability	

Grade Level Summary

This course is designed to bridge the gap between Algebra II, Geometry, and collegiate courses in mathematics. Emphasis will be placed on linear, polynomial, rational, trigonometric, exponential, and logarithmic functions, matrices, systems of equations and inequalities, and other algebraic and geometric concepts. Students may use graphing calculators and computer software for various mathematical applications. Both topics and depth of study aim to be consistent with the expectations of a traditional College Algebra course required for many non-math dependent collegiate majors or many associate degree programs.

Grade Level Units

- 1 Basic Algebraic Operations
- 2 Equations and Inequalities
- 3 Graphs
- 4 Functions
- 5 Polynomial and Rational Functions
- 6 Exponential and Logarithmic Functions
- 7 Trigonometric Functions
- 8 Trigonometric Identities and Conditional Equations
- 9 Additional Topics in Trigonometry
- 10 Additional Topics in Analytic Geometry
- 11 Systems of Equations and Matrices
- 12 Sequences, Induction, and Probability

Unit Title

Sequences, Inductions, and Probability

Unit Overview

"Sequences, and the related concept of series, are useful tools in almost all areas of mathematics. In this chapter, they will play roles in the development of several topics: a method of proof called mathematical inductions, techniques for counting, and probability." (Barnett, Zielger, Byleen, Sobecki, *College Algebra with Trigonometry*, McGraw Hill, 2011.)

Unit Essential Questions	Key Understandings
 12.1 What are sequences and series? 12.2 How can you use mathematical induction to prove a conjecture? 12.3 What are arithmetic and geometric sequences? 12.4 What are combinations and permutations? 12.5 How do you find the probability of an event? 12.6 What are the applications for Pascal's Triangle? What is the Binomial formula? 	 The distinctions between sequences and series Using mathematical induction The distinctions between arithmetic and geometric series Finding probability.

Focus Standards Addressed in the Unit

CC.2.4.HS.B.4	Recognize and evaluate random processes underlying statistical experiments.

CC.2.4.HS.B.6	Use the concepts of independence and conditional probability to interpret data.
CC.2.4.HS.B.7	Apply the rules of probability to compute probabilities of compound events in a uniform probability model.

Important Standards Addressed in the Unit		
CC.2.2.HS.D.2	Write expressions in equivalent forms to solve problems.	
CC.2.4.HS.B.5	Make inferences and justify conclusions based on sample surveys, experiments, and observational studies.	

Misconceptions		Proper Conceptions	
Concepts	Competencies		Vocabulary
12.1 Sequences and Series	12.1.a. Students should be able to define		Sequence
	12.1.b. Students should be able to define	a series.	Terms of a sequence
			General term of a sequence
12.2 Mathematical	12.2.a. Students should be able to use cou	interexamples to prove	Recursion formula
Inductions	conjectures to be false. 12.2.b. Students should be able to prove conjectures with mathematical induction.		Fibonacci Sequence
			Finite sequence Infinite sequence
	mathematical induction.		Series
12.3 Arithmetic and	12.3.a. Students should be able to identify arithmetic and		Infinite series
Geometric Sequences	geometric sequences.	y antimietre and	Finite series
Section Sequences	12.3.b. Students should be able to develo	p nth term formulas.	Summation notations
	12.3.c. Students should be able to develo		Summing index
	arithmetic series.		Alternating series
	12.3.d. Students should be able to develo	p sum formulas for finite	Counterexample
	geometric series.		Conjecture
	12.3.e. Students should be able to develop	p sum formulas for	Mathematical induction
	infinite geometric series.		Lagrange's Four Square
			Theorem
12.4 Multiplication	12.4.a. Students should be able to count v	with the multiplication	Fermat's Last theorem
Principle, Permutations,	principle.		Goldbach's Conjecture
and Combinations	12.4.b. Students should be able to use fac		Arithmetic Sequence
	12.4.c. Students should be able to identify permutations.	y and evaluate	Geometric Sequence Common difference
	12.4.d. Students should be able to identif	v and evaluate	Common ratio
	combinations.		Sum of an infinite geometric
	comonautono.		series
12.5 Sample Spaces and	12.5.a. Students should be able to find the	e probability of an event.	Multiplier doctrine
Probability	12.5.b. Students should be able to make e		Counting technique
5	assumptions.	1 5 5	Tree diagram
	12.5.c. Students should be able to approx	imate empirical	<i>n</i> factorial
	probability.		Zero factorial
			Permutation
12.6 The Binomial	12.6.a. Students should be able to use Pas		Ordering
Formula	12.6.b. Students should be able to use the Binomial Formula.		Combination
			Random experiments
			Sample space
			Event
			Simple event
			Compound event Fundamental sample space
			Probability of an event
			Acceptable probability
			5/14/15 - PAC

	assignment Probability function Theoretical probability Empirical probability Actual probability Frequency Relative frequency Expected frequency Pascal's Triangle Binomial coefficients Binomial Formula
	Dinomai Formula

Homework – Students will be required to show work which reinforces classroom concepts. Homework will be evaluated for completeness (including level of documentation of work). It is used as a tool for multiple types of assessment. It will be used to formally assess if additional instruction is required and, at times, as a grade.

Class Notebook Checks – Students will maintain a formal set of student notes aligned to learning outcomes. They will be evaluated for completeness with level of documentation considered.

Quizzes – Within each unit, competencies will be assessed in smaller chunks as a grade and for the purpose of evaluating student understanding.

Unit Test - Each unit will include a summative written test.

Suggested Strategies to Support Design of Coherent Instruction

Charlotte Danielson's Framework for Teaching: Domain 3 Instruction

3a – Student assignment sheets communicate expectations for learning.

3c – Instructional materials and unit project activities engage students in learning.

3d – Daily informal assessments of student understanding is provided through skeletal classroom notes, homework and continued student/teacher interaction.

3e – Adjustment to pacing and additional examples and/or practice is used as feedback merits.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Permit projects to be complete over extended time period
- · Provide lesson notes via visual (smart board) as well as in notebook and online formats

Interdisciplinary Connections:

Economics Physics Chemistry Geometry Construction/Architecture Business

Additional Resources: Kahn Academy

Created By:

Rebecca Myers