			Design and Modeling Grade 7 Unit #1
Course/Subject:	Grade:	Introduction to Design	Suggested Timeline: 18
Design and Modeling	7th		Days

Grade Level Summary	The design process is a methodical process used to solve a problem or create a new product. All engineering professions use this process as their cornerstone. When solving a problem, you are using the design process. Students will develop skills related to problem solving, sketching, and will set up and begin maintaining an engineering notebook and portfolio.
Grade Level Units	Unit 1: Introduction to Design Unit 2: Modeling and Statistical Analysis Unit 3: Design Challenge

Unit Title	Introduction to Design
Unit Summary	Students discover the design process as they complete an instant design challenge to create an ankle foot orthosis. They learn thumbnail, orthographic, isometric, and perspective sketching as methods for communicating design ideas effectively without the use of technology. The use of a common measurement system is essential for communicating and fabricating designs. Students learn conversions between two measurement systems and apply measurement skills while dimensioning sketches. Students conduct a mechanical dissection in the lesson project to better understand how objects and parts interact while using sketches to communicate and document their findings.

Unit	t Essential Questions:	Key	Understandings:
1.	How is a design process used to effectively develop a design solution that solves a problem or addresses a	1.	An engineering design process involves a characteristic set of practices and steps.
	design opportunity?	2.	Sketches, drawings, and images are used to record and
2.	Why is communication of design ideas with teams and with stakeholders important throughout the design		convey specific types of information depending upon the audience and the purpose of the communication.
	process?	3.	Brainstorming may take many forms and is used to
3.	What role do team norms play in making a collaborative team more successful?		generate a large number of innovative, creative ideas in a short time.
4.	Why is communication of design ideas with teams and with stakeholders important throughout the design process?	4.	In order to be an effective team member, one must demonstrate positive team behaviors and act according to accepted norms, contribute to group goals according to
5.	How are sketches used to document and communicate design ideas with accuracy?		assigned roles, and use appropriate conflict resolution strategies.
6.	Why are accurate measurement, precise dimensioning, and thorough documenting necessary for both mechanical dissection and creative problem solving?	5.	A problem and the requirements for a successful solution to the problem should be clearly communicated and justified.

- 7. How are sketches used to document and communicate design ideas with accuracy?
- 8. What role do team norms play in making a collaborative team more successful?
- 9. Why are accurate measurement, precise dimensioning, and thorough documenting necessary for both mechanical dissection and creative problem solving?

Focus Standards Addressed in the Unit:		
Standard Number	Standard Description	
3.4.7.C1	Describe how design, as a creative planning process, leads to useful products and systems.	
3.4.7.C2	Explain how modeling, testing, evaluating, and modifying are used to transform ideas into practical solutions.	
CC.2.3.7.A.1	Solve real-world and mathematical problems involving angle measure, area, surface area, circumference, and volume.	

Important Standards	Addressed in the Unit:	
Important Stanuarus	Audressed in the Unit.	

important Standard	
3.4.7.D2 Select and safely use appropriate tools, products and systems for specific tasks.	
3.4.7.A3.	Explain how knowledge gained from other fields of study has a direct effect on the development of technological products and systems.
CC.2.2.7.B.3	Model and solve real world and mathematical problems by using and connecting numerical, algebraic, and/or graphical representations.

Mis	sconceptions:	Proper Conceptions:
1.	Computers are always available these days so learning to use hand sketching is a waste of time.	1. While computers are often available, they will not always be the most convenient tool for creating sketches. Being able to generate a quick, understandable hand sketch of your thoughts will often convey exactly what your clients or team members need to see for them to make critical decisions throughout the design process.
2.	If someone is not artistic, they will not be able to create sketches and drawings.	 While having artistic skills can certainly enhance your sketches and drawings, understanding the geometry required to represent objects through sketches and drawings is more important. If a sketch conveys the intended information – even without any artistic flair – then it has served its purpose. Technical sketching and artistic sketching are not necessarily
3.	Sketches need to be made with various artistic strokes.	the same. An artistic sketch could be used to convey the same information as a technical sketch, but a technical sketch need not be an artistic sketch. Properly describing the geometry and other operational features of an object is the primary goal of a technical sketch.
4.	View placement and alignment in a multi-view technical drawing is not important.	4. In the US convention dictates that the front, top, and right side views are properly oriented and aligned with each other in a multi-view drawing. Horizontal and vertical lines that represent the same edge in the front/top and front/right views should align.

Knowledge & Concepts	Skills & Competencies	Dispositions & Practices
Design ProcessProblem Statements	 Follow the steps of the design process to arrive at the solution to a given problem Clearly define and validate the problem for which a solution is needed. 	 The ability to be creative to solve real world problems. Students will be able to take on additional rules in a team environment. Students will be engaged to think critically.

Accuracy	Dial Caliper	Occupational Therapy
Annotation	Dimension	Optimal
Cerebral Palsy (CP)	Documentation	Orthographic projection
Collaboration	Isometric sketch	• Perspective sketch
Constraint	Mechanical dissection	Precision
Criteria	Modification	• Prototype
Decision matrix	Multiview sketch	Solution
Design process	Observation	• Surface Area
		Thumbnail Sketch

Assessments:

- **Design Challenges** Students will be given a problem through a design brief for which they will develop a solution in teams within one class period.
- **Homework** Occasional homework assignments will be given to reinforce classroom concepts. Homework will be graded for completeness (including level of documentation of work) and will be used to formatively assess if additional instruction is needed.
- Engineering Notebook Checks Students will maintain a formal engineering notebook to document their work throughout the course. Periodic checks will assess proper notebook format and content. Certain projects will be completely contained within the engineering notebook and will be assessed according to the rubric provided for that project.
- **Oral Presentations** Students will report project solutions via oral presentations to the class. Content and presentation style will be assessed according to a standard rubric for each project.
- ٠

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Pair stronger students with struggling students for peer assistance.

Interdisciplinary Connections:

- Design process Scientific method
- Sketching Art
- Writing skills- English
- Research process English

Additional Resources:

- <u>http://static.pdesas.org/content/documents/Academic_Standards_for_Science_and_Technology_and_Engineering_Educat_ion_(Elementary).pdf</u> Standards for Science and Technology 7th grade
- <u>http://www.uspto.gov/</u> US Patent Office website
- <u>http://www.cerebralpalsy.org</u> Information on Cerebral Palsy

Created By: Blake Moore

			Design and Modeling Grade 7 Unit #2
Course/Subject:	Grade:	Modeling and Statistical	Suggested Timeline: 15
Modeling and Statistical Analysis	7th	Analysis	Days

Grade Level Summary	The design process is a methodical process used to solve a problem or create a new product. All engineering professions use this process as their cornerstone. When solving a problem, you are using the design process. Students will develop skills related to problem solving, sketching, and will set up and begin maintaining an engineering notebook and portfolio.
Grade Level Units	Unit 1: Introduction to Design Unit 2: Modeling and Statistical Analysis Unit 3: Design Challenge

Unit Title	Modeling and Statistical Analysis
Unit Summary	In this lesson, students transfer a two-dimensional representation to a three-dimensional solid model with technology. Students study basic geometric shapes within a mathematical model and use combinations of geometric primitives to form more complex shapes. During the design project, students work in teams and apply the design process to create a puzzle cube. Students create a solid model using a computer-aided design (CAD) application and fabricate their design solution for testing. Students use a dynamic mathematics program to complete statistical analysis from their testing results to determine if their design met the criteria and constraints.

Unit	Unit Essential Questions:		Understandings:
1.	How is a design process used to effectively develop a	1.	Physical models are created to represent and evaluate
	design solution that solves a problem or addresses a		possible solutions using prototyping technique(s) chosen
	design opportunity?		based on the presentation and/or testing requirements of a
2.	How does using a CAD application benefit an engineer?		potential solution.
3.	Why is it important for an engineer to be aware of the	2.	Statistical analysis of uni-variate data facilitates
	criteria and the constraints when designing a project?		understanding and interpretation of numerical data and can
4.	How does documentation play a critical role in each step		be used t inform, justify, and validate a design.
	of the design process?	3.	Technical drawings convey information according to an
5.	How can mathematical modeling help designers		established set of drawing practices which allow for
	understand a design?		detailed and universal interpretation of the drawing.
6.	How can computational thinking be applied when	4.	An engineering design process involves a characteristic set
	developing an engineering solution?		of practices and steps.
7.	Why would a designer choose to communicate a solid	5.	Sketches, drawings, and images are used to record and
	object design with two-dimensional sketches rather than		convey specific types of information depending upon the
	a three-dimensional model?		audience and the purpose of the communication.
8.	Why is it important for an engineer to be aware of the	6.	Computer aided drafting and design (CAD) software
	criteria and constraints when designing a project?		packages facilitate virtual modeling of parts and

9.	How does documentation play a critical role in each step of the design process?		assemblies and the creation of technical drawings. They are used to efficiently and accurately detail parts and
10.	How do coordinate systems help engineers with their modeling?	7.	assemblies according to standard engineering practice. Technical professionals clearly and accurately document
11.	How is design testing data used to improve design solutions?		and report their work using technical writing practice in multiple forms.
12.	How does using a CAD application benefit an engineer?	8.	An engineering design process involves a characteristic set
13.	Why is it important for an engineer to be aware of the		of practices and steps.
	criteria and constraints when designing a project?	9.	Brainstorming may take many forms and is used to
14.	How does documentation play a critical role in each step of the design process?		generate a large number of innovative, creative ideas in a short time.
15.	What is the role of statistical analysis in the design process?	10.	Spreadsheet programs can be used to store, manipulate, represent, and analyze data.

Focus Standards Addressed in the Unit:				
Standard Number Standard Description				
3.4.7.A1	Explain how different technologies involve different sets of processes.			
3.4.7.D3	Use data collected to analyze and interpret trends in order to identify the positive or negative effects of a technology.			

Important Standards Addressed in the Unit:			
CC.2.1.7.D.1 Analyze proportional relationships and use them to model and solve real-world and mathem problems.			
CC.2.3.7.A.1 Solve real-world and mathematical problems involving angle measure, area, surface area, circumference, and volume.			
CC.3.6.6-8.C			

Misconceptions:		Proper Conceptions:	
1.	If someone is not artistic, they will not be able to create sketches and drawings.	1.	While having artistic skills can certainly enhance your sketches and drawings, understanding the geometry required representing objects through sketches and drawings is more important. If a sketch conveys the intended information – even without any artistic flair – then it has served its purpose. While computers are often available, they will not always be
2.	Computers are always available these days so learning to use hand sketching is a waste of time.	2.	the most convenient tool for creating sketches. Being able to generate a quick understandable hand sketch of your thoughts will often convey exactly what your clients or team members need to see for them to make critical decisions throughout the design process.
3.	View placement and alignment in a multi-view technical drawing is not important.	3.	In the US convention dictates that the front, top, and right side views are properly oriented and aligned with each other in a multi-view drawing. Horizontal and vertical lines that represent the same edge in the front/top and front/right views should align.

Knowledge & Concepts	Skills & Competencies	Dispositions & Practices	
 3-D Sketching Multiview Sketching	 Represent 3-D objects on a 2-D plane using oblique, isometric, and perspective pictorial sketching concepts. Use two or more orthographic 2-D projections of an object to communicate the 3-D shape of the object. 	 The ability to be creative to solve realworld problems. Students will be able to use prior knowledge to solve problems. Students will be able to take on additional rules in a team environment. Students will be engaged to think critically. 	

Additive method	• Feedback	Ordered pair
Algorithm	Geometric primitive	Perpendicular lines
Algorithm thinking	• Iteration	Polygon
Analyze	• Line segment	Problem decomposition
Box-and-whisker plot	Lower-quartile median	Problem statement
Computational thinking	Mathematical model	Section View
Computer-aided design(CAD)	• Mean	Solid Modeling
Coordinate plane	Median	Subtractive method
Design statement	Model	Three-dimensional
-		• Tree diagram
		Two-dimensional
		• Upper-quartile median
		Vertices

Assessments:

- **Design Challenges** Students will be given a problem through a design brief for which they will develop a solution in teams within one class period.
- **Homework** Occasional homework assignments will be given to reinforce classroom concepts. Homework will be graded for completeness (including level of documentation of work) and will be used to formatively assess if additional instruction is needed.
- Engineering Notebook Checks Students will maintain a formal engineering notebook to document their work throughout the course. Periodic checks will assess proper notebook format and content. Certain projects will be completely contained within the engineering notebook and will be assessed according to the rubric provided for that project.
- **Oral Presentations** Students will report project solutions via oral presentations to the class. Content and presentation style will be assessed according to a standard rubric for each project.
- Unit Tests / Unit Projects Each unit will include a summative written test or project. Projects may be assessed through a presentation, engineering notebook review, electronic submission, or a combination of one or more of these. Rubrics and design briefs will be provided with each project to clearly communicate the content and performance expectations for that project.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Pair stronger students with struggling students for peer assistance.
- Break extended projects into smaller identifiable milestones with checkpoints along the way

Interdisciplinary Connections:

- Design process Scientific method
- Sketching Art
- Writing skills- English
- Research process English

Additional Resources:

- <u>http://static.pdesas.org/content/documents/Academic_Standards_for_Science_and_Technology_and_Engineering_Educati</u> on (Elementary).pdf - Standards for Science and Technology 7th grade
- <u>http://www.uspto.gov/</u> US Patent Office website
- <u>http://www.cerebralpalsy.org</u> Information on Cerebral Palsy

Created By: Blake Moore

Course/Subject: Modeling and Statistical Analysis	Grade: 7th	Modeling and Statistical Analysis	Unit #2 Suggested Timeline: 15 Days
			Design and Modeling Grade 7

Grade Level Summary	The design process is a methodical process used to solve a problem or create a new product. All engineering professions use this process as their cornerstone. When solving a problem, you are using the design process. Students will develop skills related to problem solving, sketching, and will set up and begin maintaining an engineering notebook and portfolio.
Grade Level Units	Unit 1: Introduction to Design Unit 2: Modeling and Statistical Analysis Unit 3: Design Challenge

Unit Title	Modeling and Statistical Analysis
Unit Summary	In this lesson, students transfer a two-dimensional representation to a three-dimensional solid model with technology. Students study basic geometric shapes within a mathematical model and use combinations of geometric primitives to form more complex shapes. During the design project, students work in teams and apply the design process to create a puzzle cube. Students create a solid model using a computer-aided design (CAD) application and fabricate their design solution for testing. Students use a dynamic mathematics program to complete statistical analysis from their testing results to determine if their design met the criteria and constraints.

Unit	Unit Essential Questions:		Key Understandings:	
1.	How is a design process used to effectively develop a	1.	Physical models are created to represent and evaluate	
	design solution that solves a problem or addresses a		possible solutions using prototyping technique(s) chosen	
	design opportunity?		based on the presentation and/or testing requirements of a	
2.	How does using a CAD application benefit an engineer?		potential solution.	
3.	Why is it important for an engineer to be aware of the	2.	Statistical analysis of univariate data facilitates	
	criteria and the constraints when designing a project?		understanding and interpretation of numerical data and can	
4.	How does documentation play a critical role in each step		be used t inform, justify, and validate a design.	
	of the design process?	3.	Technical drawings convey information according to an	
5.	How can mathematical modeling help designers		established set of drawing practices which allow for	
	understand a design?		detailed and universal interpretation of the drawing.	
6.	How can computational thinking be applied when	4.	An engineering design process involves a characteristic set	
	developing an engineering solution?		of practices and steps.	
7.	Why would a designer choose to communicate a solid	5.	Sketches, drawings, and images are used to record and	
	object design with two-dimensional sketches rather than		convey specific types of information depending upon the	
	a three-dimensional model?		audience and the purpose of the communication.	
8.	Why is it important for an engineer to be aware of the	6.	Computer aided drafting and design (CAD) software	
	criteria and constraints when designing a project?		packages facilitate virtual modeling of parts and	

9.	How does documentation play a critical role in each step of the design process?		assemblies and the creation of technical drawings. They are used to efficiently and accurately detail parts and
10.	How do coordinate systems help engineers with their modeling?	7.	assemblies according to standard engineering practice. Technical professionals clearly and accurately document
11.	How is design testing data used to improve design solutions?		and report their work using technical writing practice in multiple forms.
12.	How does using a CAD application benefit an engineer?	8.	An engineering design process involves a characteristic set
13.	Why is it important for an engineer to be aware of the		of practices and steps.
	criteria and constraints when designing a project?	9.	Brainstorming may take many forms and is used to
14.	How does documentation play a critical role in each step of the design process?		generate a large number of innovative, creative ideas in a short time.
15.	What is the role of statistical analysis in the design process?	10.	Spreadsheet programs can be used to store, manipulate, represent, and analyze data.

Focus Standards Addr	essed in the Unit:
Standard Number	Standard Description
3.4.7.A1	Explain how different technologies involve different sets of processes.
3.4.7.D3	Use data collected to analyze and interpret trends in order to identify the positive or negative effects of a technology.

Important Standard	s Addressed in the Unit:
CC.2.1.7.D.1	Analyze proportional relationships and use them to model and solve real-world and mathematical problems.
CC.2.3.7.A.1	Solve real-world and mathematical problems involving angle measure, area, surface area, circumference, and volume.
CC.3.6.6-8.C	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

Mis	sconceptions:	Proper Conceptions:
1.	If someone is not artistic, they will not be able to create sketches and drawings.	 While having artistic skills can certainly enhance your sketches and drawings, understanding the geometry required representing objects through sketches and drawings is more important. If a sketch conveys the intended information – even without any artistic flair – then it has served its purpose.
2.	Computers are always available these days so learning to use hand sketching is a waste of time.	2. While computers are often available, they will not always be the most convenient tool for creating sketches. Being able to generate a quick understandable hand sketch of your thoughts will often convey exactly what your clients or team members need to see for them to make critical decisions throughout the design process.
3.	View placement and alignment in a multi-view technical drawing is not important.	3. In the US convention dictates that the front, top, and right side views are properly oriented and aligned with each other in a multi-view drawing. Horizontal and vertical lines that represent the same edge in the front/top and front/right views should align.

Knowledge & Concepts	Skills & Competencies	Dispositions & Practices
 3-D Sketching Multiview Sketching	 Represent 3-D objects on a 2-D plane using oblique, isometric, and perspective pictorial sketching concepts. Use two or more orthographic 2-D projections of an object to communicate the 3-D shape of the object. 	 The ability to be creative to solve realworld problems. Students will be able to use prior knowledge to solve problems. Students will be able to take on additional rules in a team environment. Students will be engaged to think critically.

Additive method	• Feedback	Ordered pair
Algorithm	Geometric primitive	Perpendicular lines
Algorithm thinking	• Iteration	Polygon
Analyze	• Line segment	Problem decomposition
Box-and-whisker plot	• Lower-quartile median	Problem statement
Computational thinking	Mathematical model	Section View
Computer-aided design(CAD)	• Mean	Solid Modeling
Coordinate plane	Median	Subtractive method
Design statement	Model	• Three-dimensional
		• Tree diagram
		Two-dimensional
		• Upper-quartile median
		Vertices

Assessments:

- **Design Challenges** Students will be given a problem through a design brief for which they will develop a solution in teams within one class period.
- **Homework** Occasional homework assignments will be given to reinforce classroom concepts. Homework will be graded for completeness (including level of documentation of work) and will be used to formatively assess if additional instruction is needed.
- Engineering Notebook Checks Students will maintain a formal engineering notebook to document their work throughout the course. Periodic checks will assess proper notebook format and content. Certain projects will be completely contained within the engineering notebook and will be assessed according to the rubric provided for that project.
- **Oral Presentations** Students will report project solutions via oral presentations to the class. Content and presentation style will be assessed according to a standard rubric for each project.
- Unit Tests / Unit Projects Each unit will include a summative written test or project. Projects may be assessed through a presentation, engineering notebook review, electronic submission, or a combination of one or more of these. Rubrics and design briefs will be provided with each project to clearly communicate the content and performance expectations for that project.

Differentiation:

- Provide graphic organizers
- Provide multiple concrete examples
- Pair stronger students with struggling students for peer assistance.
- Break extended projects into smaller identifiable milestones with checkpoints along the way

Interdisciplinary Connections:

- Design process Scientific method
- Sketching Art
- Writing skills- English
- Research process English

Additional Resources:

- <u>http://static.pdesas.org/content/documents/Academic_Standards_for_Science_and_Technology_and_Engineering_Educati</u> on (Elementary).pdf - Standards for Science and Technology 7th grade
- <u>http://www.uspto.gov/</u> US Patent Office website
- <u>http://www.cerebralpalsy.org</u> Information on Cerebral Palsy

Created By: Blake Moore