

ACROSS CLUES

- 4. _____ affects reaction rate by varying the number of molecular collisions which occur.
- 5. The ____ model for chemical reactions can be used to explain
- observed behavior of rxn. rates.
 7. The most unstable, or highest energy part of the reaction process is the
- 11. In comparing reaction rate to temperature, we must use absolute temperature. or the scale.
- temperature, or the scale.

 12. The is a fraction which represents how often molecules collide "reactably."
- 13. One substance penetrating into
- another is _____.

 14. In humans, digestion is highly dependent on to increase the rate of reaction.

DOWN CLUES

- ____ is a form of radiation often used as a catalyst.
- 2. ____must be overcome for a reaction to occur.
- 3. Only a ____ of all molecular collisions will result in a
- reaction.

 6. A substance used to speed up a chemical reaction is a(n)
- 8. _____simplified the rate constant equation for the
- of molecules toward each other determine whether or not
- molecules may react.

 10. Collection of one substance on the surface of another is called

Name:_	KEY
Date:_	

Chemistry II Practice Problems

Chapter 12 - Kinetics

1. The following data sets were collected for the reaction; A + B -> products

[A]o (mol/L)	[<u>B]_o (moi/L)</u>	Initial Rates (mol/Ls)
×2 0.10 0.20 0.20	/ /0.20	x2/0.030 : A 15 156 order
0.20 ×	0.20	0.059 ×1:Bis O order
0.20	0.30	0.060
0.30	0.30	0.090
0.30	0.50	0.090

Determine the form of the rate law, including the order of each reactant and the value of the rate constant. Also, write a pseudo-integrated rate law (in terms of one reactant) which would be applicable to this reaction

one reactant) which would be applicable to this reaction

$$Rate = h[A]'[B]'' \text{ or } [Rate = h[A]]$$

$$Rate = 0.35^{-1}(T1,3,4,5) \qquad pseudo |RL" \cdot ln[A] = -kt + ln[A]_o$$

$$0.295 s^{-1}(T2)$$

$$0.299 s^{-1}(Ave)$$

2. The following data sets were collected for the reaction; $NO + O_2 \longrightarrow products$

[NO] [Mo (mol/L) | ES (mol/L) | Initial Rates (mol/Ls) |
$$\times 2 \times 10^{18}$$
 | $\times 1 \times 10^{18}$ | $\times 1 \times 1$

Determine the form of the rate law, including the order of each reactant and the value of the rate constant.

Rate =
$$k [NO]^{2}[O_{2}]$$

 $k = \frac{Rate}{[NO]^{2}[O_{2}]} = 2 \times 10^{-38} (ail trials)$
 $2 \times 10^{-38} L^{2}/mol^{2} S$

3. The following data sets were collected for the reaction; $2 \text{ MnO}_4^- + 5 \text{ H}_2\text{C}_2\text{O}_4 + 6 \text{ H}^+ -> 2 \text{Mn}^{2+} + 10 \text{ CO}_2 + 8 \text{ H}_2\text{O}$

[MnO ₄ -] ₀ (mol/L)	[H2C2O4]0 (mol/L)	[H+] _o (mol/L)	Initial Rates (mol/	
$\times 2 < 1 \times 10^{-3}$ 2 x 10 ⁻³	1 x 10-3	Same 1.0	$\times 4 < \frac{2.0 \times 10^{-4}}{8.0 \times 10^{-4}}$: MnOy is 2 order
2 x 10 ⁻³ Same 2 x 10 ⁻³	$\frac{5ame1 \times 10^{-3}}{2 \times 10^{-3}}$	1.0 Same 1.0	$X^2 < 1.6 \times 10^{-3}$:. H2C204islorder
Saru 2 x 10 ⁻³	Scart 2 x 10-3	50mg 1.0 X2 2.0	X 1 4.6 x 10 ⁻³	: Htis ZERO
	Rote = 1	R[MnO4]2	[H, C204]	order

Determine the form of the rate law, including the order of each reactant and the value of the rate constant. **ALSO** — Write the pseudo integrated rate law which could be used when $[H_2C_2O_4]_0$ is very much that the other concentrations.

Fig. 18. Let $[H_2C_2O_4]_0 = -kt + ln[H_2C_2O_4]_0$

$$R = \frac{Rate}{[Mn04]^2[H_2C_2O_4]} = 2 \times 10^5 L_{mol}^2 S$$
(for each of the 4 trials)

4. Using the graphic method, determine the integrated rate law for the decay of HO₂• radicals according to the given data. Also determine the half-life of a sample of radicals which has an initial concentration of one mole per cubic centimeter. = 6.02×10 25 indice.

constant, (b) the concentration of oxygen at 10 minutes, (c) the concentration of NO₂ at 40 minutes, and (d) the half-life for this reaction.

	10 10 11111111111111111111111111111111	- (-)	
[N205]v.t	Time (Min)	[N ₂ O ₅] (mol/L)	@[ln[N205] = -kt +ln[N2
	0	1.24 x 10 ⁻²	R = - Slope = - (-0,030098
	10	0.92 x 10 ^{−2}	= 0.0301 min-1
Fig. 7.	20	0.68 x 10 ⁻²	7 7 7
en [N205] v. t	30	0.50 x 10 ^{−2}	$(b) \Delta (N_2 o_5) = 2 \times \Delta (O_2)$
	st) 40	0.37 x 10 ⁻²	$[0_2] = \Delta [N_2 0_5] = (1.24 \times 10^{-3})$
0	rder 50	0.28 x 10 ⁻²	
	/ 70	0.15 x 10 ^{−2}	$= (1.6 \times 10^{-3} \text{ M})$
100 Vit	b	a C	@ [NO] = Zx D[N205]

are pure stoichiometry!

$$Q[NQ] = 2 \times D[N_2O_5]$$

$$= 2 \times (1.24 \times 10^{-2} \text{ M} - 0.37 \times 10^{-2} \text{ M})$$

$$= (0.0174 \text{ M})$$

Name:	KEY	٠
Name		_

Support or refute the proposed mechanism.

Overall Reaction: $Cl_2 + CHCl_3 \rightarrow HCl + CCl_4$,
Observed Rate Law: Rate = k[Cl] ^{1/2} [CHCl ₃]	k, [cl2] = k, [cl] 2 50 [cl] = k, [cl.
$Cl_2 \leftrightarrow 2CI$	(Both fwd & rev are fast w/ equal rates) Substitute for the
Strong CI + CHCl3 -> HCl + CEl3	(Slow) Rate = h [Ce] [CHCe] intermedia
$\frac{CGl_3 + CI \rightarrow CCl_4}{CC \rightarrow CHCl_3 \rightarrow HCl_4 + CCl_4 + CCl_4}$	(Fast) Rate = h_2h_1 [Cl2] 2 [CHCl3] meets (Fast) ets requirement #1 >= l2 50 [Rate= l2 [Cl] Fig. 24 24 24 24 24 24 24 24 24 24 24 24 24
许许许许许许许许许我就我就我说我	*************************************

Support or refute the proposed mechanisms.

Overall Reaction: $2 \text{ NO} + O_2 \rightarrow 2 \text{ NO}_2$

Observed Rate Law: Rate = $k[NO]^2[O_2]$

REFUTE	Proposed Mechanism A $NO + O_2 \rightarrow NO_2 + O$ $O + NO \rightarrow NO_2$	(Slow) Rate = & [NO][Oz] Reg. # 2 NO (Fast)
	7N0+O ₂ → 2NO ₂ Req [#] o Proposed Mechanism B	
SUPPORT	$NO + O_2 \longleftrightarrow NO_3$	(Both Fast with equal rates)
	$700_3 + NO \rightarrow 2NO_2$	(Slow) Rate = k [NO][NO] Late = +2 2 2 [NO][O] JCNO
	2NO+ 02 72NO2 Reg.#1	(Both Fast with equal rates). (Slow) Rate = k_2[NO][NO] Rate = k_k k_1 [NO][O_2][NO] [YES! Substitute for the intermediate Rate = k_2[NO]^2[O_2] (Slow) Req. #2 [NO]^2 Req. #2 [NO] YES!
4	Proposed Mechanism C	Rate = 12 (NO) (2)
,	$2 \text{ NO} \rightarrow \text{N}_2\text{Q}_2$	(Slow) Rate = k, [NO] 2 Rate = k [NO] 2 [O2] yES!
REFUTE	$N_2Q_2 + O_2 \rightarrow N_2O_4$	
	$N_2O_4 \rightarrow 2NO_2$	(Fast) RE9 #2 XINO!
	2NO+02 -> 2NO2 Reg#1	MYES! (Oxygen is NOT Zero order)
	Proposed Mechanism D	
,	_ 2 NO ←→ N ₂ Q ₂ _	(Both Fast with equal rates)
REFUTE	$N_2Q_2 \rightarrow NO_2 + O_2$	(Fast)
	$Q + NO \rightarrow NO_2$	(Fast)
	3NO -> 2NU2	(Fast) (Fast) (Fast) Went to there's not even anywhere anywhere anywhere anywhere anywhere it is not the mechanism! There's not even anywhere is not anywhere it is not any oxygen mechanism!
	NONSENSE requirem	reat # 1 X NO! any oxy the meaning
		· · · · · · · · · · · · · · · · · · ·